concat_kernel.cpp 3.9 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "operators/kernel/concat_kernel.h"

namespace paddle_mobile {
namespace operators {
朔-望's avatar
朔-望 已提交
21 22 23
template <typename T>
class ConcatFunctor {
 public:
24 25 26 27 28 29 30 31 32
  void operator()(const std::vector<framework::Tensor> &input, const int axis,
                  framework::Tensor *output) {
    size_t num = input.size();
    int rows = 1;
    auto dim_0 = input[0].dims();
    for (int i = 0; i < axis; ++i) {
      rows *= dim_0[i];
    }
    int out_rows = rows, out_cols = 0;
E
eclipsess 已提交
33

34 35 36 37 38 39
    std::vector<int64_t> input_cols(input.size());
    for (int i = 0; i < num; ++i) {
      int t_cols = input[i].numel() / rows;
      out_cols += t_cols;
      input_cols[i] = t_cols;
    }
E
eclipsess 已提交
40

41 42 43 44 45 46 47 48 49 50
    // computation
    for (int k = 0; k < out_rows; ++k) {
      T *dst_ptr = output->data<T>() + k * out_cols;
      int col_idx = 0;
      for (int j = 0; j < num; ++j) {
        int col_len = input_cols[j];
        const T *src_prt = input[j].data<T>() + k * col_len;
        memory::Copy(dst_ptr + col_idx, src_prt, sizeof(T) * col_len);
        col_idx += col_len;
      }
E
eclipsess 已提交
51
    }
52
  }
E
eclipsess 已提交
53 54 55 56 57 58 59
};
template <typename T>
void StridedNumelCopyWithAxis(int64_t axis, T *dst,
                              const framework::DDim &dst_stride_numel,
                              const T *src,
                              const framework::DDim &src_stride_numel,
                              int64_t size) {
60 61 62
  int64_t before = dst_stride_numel[0] / dst_stride_numel[axis];
  int64_t src_after = src_stride_numel[axis];
  int64_t dst_after = dst_stride_numel[axis];
E
eclipsess 已提交
63

64 65
  ///"src and dst tensor should have the same dims size."
  assert(src_stride_numel.size() == dst_stride_numel.size());
E
eclipsess 已提交
66

67 68 69 70 71 72
  for (int64_t i = 0; i < axis; ++i) {
    if (i < axis) {
      /// src and dst should have the same elements
      /// except the specified axis.
      assert(src_stride_numel[i] / src_stride_numel[axis] ==
             dst_stride_numel[i] / dst_stride_numel[axis]);
E
eclipsess 已提交
73

74 75 76 77 78 79
    } else if (i == axis) {
      continue;
    } else {
      /// "src and dst should have the same elements "
      ///         "except the specified axis."
      assert(src_stride_numel[i] == dst_stride_numel[i]);
E
eclipsess 已提交
80
    }
81
  }
E
eclipsess 已提交
82

83 84 85
  for (int64_t i = 0; i < before; ++i) {
    memory::Copy(dst + i * dst_after, src + i * src_after, sizeof(T) * size);
  }
E
eclipsess 已提交
86 87 88 89
}

template <>
void ConcatKernel<CPU, float>::Compute(const ConcatParam &param) const {
90 91 92 93
  auto inputs = param.Inputs();
  auto *out = param.Out();
  int64_t axis = param.Axis();
  out->mutable_data<float>();
E
eclipsess 已提交
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  /// Sometimes direct copies will be faster, this maybe need deeply analysis.
  if (axis == 0 && inputs.size() < 10) {
    size_t output_offset = 0;
    for (auto *in : inputs) {
      auto in_stride = framework::stride_numel(in->dims());
      auto out_stride = framework::stride_numel(out->dims());
      StridedNumelCopyWithAxis<float>(axis, out->data<float>() + output_offset,
                                      out_stride, in->data<float>(), in_stride,
                                      in_stride[axis]);
      output_offset += in_stride[axis];
    }
  } else {
    std::vector<framework::Tensor> inputs_concat(inputs.size());
    for (int j = 0; j < inputs.size(); ++j) {
      inputs_concat[j] = *inputs[j];
E
eclipsess 已提交
110
    }
111 112 113
    ConcatFunctor<float> concat_functor;
    concat_functor(inputs_concat, static_cast<int>(axis), out);
  }
E
eclipsess 已提交
114 115
}

朔-望's avatar
朔-望 已提交
116 117
}  // namespace operators
}  // namespace paddle_mobile