cl_runtime.h 4.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <fstream>
15
#include <map>
Y
Yan Chunwei 已提交
16 17 18
#include <memory>
#include <string>
#include <vector>
19 20
#include "lite/backends/opencl/cl_include.h"
#include "lite/backends/opencl/cl_utility.h"
Y
Yan Chunwei 已提交
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
typedef enum {
  UNKNOWN = 0,
  QUALCOMM_ADRENO = 1,
  ARM_MALI = 2,
  IMAGINATION_POWERVR = 3,
  OTHERS = 4,
} GpuType;

typedef enum {
  PERF_DEFAULT = 0,
  PERF_LOW = 1,
  PERF_NORMAL = 2,
  PERF_HIGH = 3
} GPUPerfMode;

typedef enum {
  PRIORITY_DEFAULT = 0,
  PRIORITY_LOW = 1,
  PRIORITY_NORMAL = 2,
  PRIORITY_HIGH = 3
} GPUPriorityLevel;

// Adreno extensions
// Adreno performance hints
typedef cl_uint cl_perf_hint;
#define CL_CONTEXT_PERF_MODE_QCOM 0x40C2
#define CL_PERF_MODE_HIGH_QCOM 0x40C3
#define CL_PERF_MODE_NORMAL_QCOM 0x40C4
#define CL_PERF_MODE_LOW_QCOM 0x40C5

// Adreno priority hints
typedef cl_uint cl_priority_hint;

#define CL_PRIORITY_HINT_NONE_QCOM 0
#define CL_CONTEXT_PRIORITY_LEVEL_QCOM 0x40C9
#define CL_PRIORITY_HINT_HIGH_QCOM 0x40CA
#define CL_PRIORITY_HINT_NORMAL_QCOM 0x40CB
#define CL_PRIORITY_HINT_LOW_QCOM 0x40CC

Y
Yan Chunwei 已提交
61 62 63
namespace paddle {
namespace lite {

64 65 66
extern const std::map<std::string, std::vector<unsigned char>>
    opencl_kernels_files;

Y
Yan Chunwei 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80
class CLRuntime {
 public:
  static CLRuntime* Global();

  bool Init();

  cl::Platform& platform();

  cl::Context& context();

  cl::Device& device();

  cl::CommandQueue& command_queue();

81
  std::unique_ptr<cl::Program> CreateProgram(const cl::Context& context,
Y
Yan Chunwei 已提交
82 83 84 85 86 87 88 89 90 91 92 93
                                             std::string file_name);

  std::unique_ptr<cl::UserEvent> CreateEvent(const cl::Context& context);

  bool BuildProgram(cl::Program* program, const std::string& options = "");

  bool IsInitSuccess() { return is_init_success_; }

  std::string cl_path() { return cl_path_; }

  void set_cl_path(std::string cl_path) { cl_path_ = cl_path; }

94 95
  std::map<std::string, size_t>& GetDeviceInfo();

96 97
  GpuType& GetGpuType();

Y
Yan Chunwei 已提交
98
 private:
99
  CLRuntime() { Init(); }
Y
Yan Chunwei 已提交
100 101 102 103 104 105 106

  ~CLRuntime();

  bool InitializePlatform();

  bool InitializeDevice();

107 108 109 110 111
  void GetAdrenoContextProperties(
      std::vector<cl_context_properties>* properties,
      GPUPerfMode gpu_perf_mode,
      GPUPriorityLevel gpu_priority_level);

Y
Yan Chunwei 已提交
112
  std::shared_ptr<cl::Context> CreateContext() {
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    // note(ysh329): gpu perf mode and priority level of adreno gpu referred
    // from xiaomi/mace.
    // However, no performance gain after `PERF_HIGH` and `PRIORITY_HIGH` set.
    auto perf_mode = GPUPerfMode::PERF_HIGH;
    auto priority_level = GPUPriorityLevel::PRIORITY_HIGH;
    std::vector<cl_context_properties> context_properties;
    if (gpu_type_ == GpuType::QUALCOMM_ADRENO) {
      GetAdrenoContextProperties(
          &context_properties, perf_mode, priority_level);
    }
    auto context =
        std::make_shared<cl::Context>(std::vector<cl::Device>{device()},
                                      context_properties.data(),
                                      nullptr,
                                      nullptr,
                                      &status_);
Y
Yan Chunwei 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    CL_CHECK_FATAL(status_);
    return context;
  }

  std::shared_ptr<cl::CommandQueue> CreateCommandQueue(
      const cl::Context& context) {
    cl_command_queue_properties properties = 0;

#ifdef LITE_WITH_PROFILE
    properties |= CL_QUEUE_PROFILING_ENABLE;
#endif  // LITE_WITH_PROFILE
    auto queue = std::make_shared<cl::CommandQueue>(
        context, device(), properties, &status_);
    CL_CHECK_FATAL(status_);
    return queue;
  }

146 147
  GpuType ParseGpuTypeFromDeviceName(std::string device_name);

148 149
  std::map<std::string, size_t> device_info_;

150 151
  GpuType gpu_type_{GpuType::UNKNOWN};

Y
Yan Chunwei 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  std::string cl_path_;

  std::shared_ptr<cl::Platform> platform_{nullptr};

  std::shared_ptr<cl::Context> context_{nullptr};

  std::shared_ptr<cl::Device> device_{nullptr};

  std::shared_ptr<cl::CommandQueue> command_queue_{nullptr};

  cl_int status_{CL_SUCCESS};

  bool initialized_{false};

  bool is_init_success_{false};
};

}  // namespace lite
}  // namespace paddle