graph.h 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <cmath>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/tensor.h"
#include "lite/kernels/mlu/bridges/tensor.h"
25
#include "lite/utils/macros.h"
26

27 28 29 30 31 32
#define PRINT_HW_TIME false

#if PRINT_HW_TIME
#include <mutex>  //NOLINT
#endif

33 34 35 36 37 38 39 40 41
namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

// The Context of the converters which used for converting the ops of subgraph
// to the MLU IR graph
class Graph {
 public:
42 43 44 45 46 47 48
  Graph() {
    CNML_CALL(cnmlCreateFusionOp(&fusion_op_));
#if PRINT_HW_TIME
    CNRT_CALL(cnrtCreateNotifier(&notifier_start_));
    CNRT_CALL(cnrtCreateNotifier(&notifier_end_));
#endif
  }
49 50

  ~Graph() {
51
    FreeConstData();
52 53 54 55
    CNML_CALL(cnmlDestroyFusionOp(&fusion_op_));
    for (auto op : ops_) {
      CNML_CALL(cnmlDestroyBaseOp(&op));
    }
56 57 58 59 60 61 62 63 64 65
#if PRINT_HW_TIME
    CNRT_CALL(cnrtDestroyNotifier(&notifier_start_));
    CNRT_CALL(cnrtDestroyNotifier(&notifier_end_));
    double total_time = 0;
    for (auto& f : time_log_) {
      total_time += f;
    }
    std::cout << "cnml hardware time for " << time_log_.size()
              << " process:" << total_time / time_log_.size() << std::endl;
#endif
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  }

  // Data node
  std::shared_ptr<MLUTensor> AddNode(
      const std::string& name,
      std::vector<int64_t> shape,
      cnmlTensorType_t tensor_type = CNML_TENSOR,
      cnmlDataOrder_t data_order = CNML_NCHW,
      cnmlDataType_t mlu_dtype = CNML_DATA_FLOAT32,
      void* raw_ptr = nullptr);

  std::shared_ptr<MLUTensor> GetNode(const std::string& name) {
    CHECK(HasNode(name)) << "[MLU] Node " << name << " not found.";
    return nodes_.at(name);
  }

  bool HasNode(const std::string& name) {
    return nodes_.find(name) != nodes_.end();
  }

  void AddInput(std::shared_ptr<MLUTensor> tensor) {
    inputs_.push_back(tensor->mlu_tensor());
    input_tensors_.push_back(tensor);
  }

  void AddOutput(std::shared_ptr<MLUTensor> tensor) {
    outputs_.push_back(tensor->mlu_tensor());
    output_tensors_.push_back(tensor);
  }

  void FuseOp(cnmlBaseOp_t op) { CNML_CALL(cnmlFuseOp(op, fusion_op_)); }

  void Compile(cnmlCoreVersion_t core_version, int core_number) {
    CNML_CALL(cnmlSetFusionIO(fusion_op_,
                              inputs_.data(),
                              inputs_.size(),
                              outputs_.data(),
                              outputs_.size()));
    CNML_CALL(cnmlSetFusionOpCorenum(fusion_op_, core_number));
    CNML_CALL(cnmlSetFusionOpCoreVersion(fusion_op_, core_version));
    CNML_CALL(cnmlCompileFusionOp_V2(fusion_op_));
    for (auto in : input_tensors_) {
      input_addrs_.push_back(in->mlu_data());
    }
    for (auto out : output_tensors_) {
      output_addrs_.push_back(out->mlu_data());
    }
  }

  void Compute(cnrtInvokeFuncParam_t forward_param, cnrtQueue_t que) {
116
#if PRINT_HW_TIME
117
    static LITE_THREAD_LOCAL float hw_time;
118 119
    CNRT_CALL(cnrtPlaceNotifier(notifier_start_, que));
#endif
120 121 122 123 124 125 126
    CNML_CALL(cnmlComputeFusionOpForward_V3(fusion_op_,
                                            input_addrs_.data(),
                                            input_addrs_.size(),
                                            output_addrs_.data(),
                                            output_addrs_.size(),
                                            &forward_param,
                                            que));
127 128 129 130
#if PRINT_HW_TIME
    CNRT_CALL(cnrtPlaceNotifier(notifier_end_, que));
#endif

131
    CNRT_CALL(cnrtSyncQueue(que));
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#if PRINT_HW_TIME
    CNRT_CALL(cnrtNotifierDuration(notifier_start_, notifier_end_, &hw_time));
    hw_time /= 1000.0f;
    DLOG(INFO) << "cnml hardware time " << hw_time << "ms" << std::endl;
    std::lock_guard<std::mutex> lk(time_mut_);
    time_log_.push_back(hw_time);
#endif
  }

  template <typename T>
  void* RegisterConstData(size_t len) {
    void* addr = malloc(len * sizeof(T));
    const_data_storage_.push_back(addr);
    return addr;
  }

  void FreeConstData() {
    for (auto& addr : const_data_storage_) {
      free(addr);
    }
  }

  void BindConstRawData(std::string tensor_name,
                        const float* data,
                        size_t len,
                        bool alloc = true) {
    void* alloc_data;
    if (fp_type_ == CNML_DATA_FLOAT32) {
      if (alloc) {
        alloc_data = RegisterConstData<float>(len);
        memcpy(alloc_data, data, len * sizeof(float));
      } else {
        alloc_data = const_cast<void*>(static_cast<const void*>(data));
      }
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(), alloc_data, false));
    } else if (fp_type_ == CNML_DATA_FLOAT16) {
      void* data_fp16 = RegisterConstData<::paddle::lite::fluid::float16>(len);
      CNRT_CALL(
          cnrtCastDataType(const_cast<void*>(static_cast<const void*>(data)),
                           CNRT_FLOAT32,
                           data_fp16,
                           CNRT_FLOAT16,
                           len,
                           nullptr));
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(), data_fp16, false));
    } else {
      CHECK(0);
    }
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
  }

  void BindConstData(std::string tensor_name, ::paddle::lite::Tensor* tensor) {
    const float* data = tensor->data<float>();
    size_t len = tensor->data_size();
    if (fp_type_ == CNML_DATA_FLOAT32) {
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(),
          const_cast<void*>(static_cast<const void*>(data)),
          false));
    } else if (fp_type_ == CNML_DATA_FLOAT16) {
      auto* data_fp16 = tensor->mutable_data<::paddle::lite::fluid::float16>();
      for (size_t i = 0; i < len; ++i) {
        data_fp16[i] = static_cast<::paddle::lite::fluid::float16>(data[i]);
      }
      CNML_CALL(cnmlBindConstData_V2(nodes_[tensor_name]->mlu_tensor(),
                                     static_cast<void*>(data_fp16),
                                     false));
    } else {
      CHECK(0);
    }
  }

  void SetComputingDataType(cnmlBaseOp_t op,
                            cnmlTensor_t tensor,
                            float scale,
                            cnmlDataType_t data_type = CNML_DATA_INT8) {
    cnmlQuantizedParam_t quant_param;
    CNML_CALL(
        cnmlCreateQuantizedParam(&quant_param, scale2position(scale), 1, 0.0));
    CNML_CALL(
        cnmlSetOperationComputingDataType(op, tensor, data_type, quant_param));
    CNML_CALL(cnmlDestroyQuantizedParam(&quant_param));
  }

  void SetFPType(::paddle::lite_api::PrecisionType type) {
    switch (type) {
      case ::paddle::lite_api::PrecisionType::kFP16:
        fp_type_ = CNML_DATA_FLOAT16;
        break;
      case ::paddle::lite_api::PrecisionType::kFloat:
        fp_type_ = CNML_DATA_FLOAT32;
        break;
      default:
        CHECK(0);
    }
  }

  cnmlDataType_t FPType() { return fp_type_; }

 private:
  cnmlDataType_t fp_type_{CNML_DATA_FLOAT32};
  std::unordered_map<std::string, std::shared_ptr<MLUTensor>> nodes_;
  std::vector<cnmlTensor_t> inputs_;
  std::vector<cnmlTensor_t> outputs_;
  std::vector<void*> input_addrs_;
  std::vector<void*> output_addrs_;
  std::vector<std::shared_ptr<MLUTensor>> input_tensors_;
  std::vector<std::shared_ptr<MLUTensor>> output_tensors_;
  std::vector<cnmlBaseOp_t> ops_;
  cnmlFusionOp_t fusion_op_;
243 244 245 246 247 248
  std::vector<void*> const_data_storage_;
#if PRINT_HW_TIME
  cnrtNotifier_t notifier_start_{}, notifier_end_{};
  std::mutex time_mut_;
  std::vector<float> time_log_;
#endif
249 250 251 252 253 254
};

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle