depthwise_conv2d_buffer_compute.cc 5.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16

17
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
18 19
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
20
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class DepthwiseConv2dCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::ConvParam;

34 35 36 37
  std::string doc() const override {
    return "DepthwiseConv2d using cl::Buffer, kFloat";
  }

Y
Yan Chunwei 已提交
38 39 40 41
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
    if (param.fuse_relu) {
      build_options_ += " -DRELU";
42 43 44
    } else if (param.activation_param.active_type ==
               lite_api::ActivationType::kRelu6) {
      build_options_ += " -DRELU6";
Y
Yan Chunwei 已提交
45 46 47 48 49 50 51 52 53 54 55
    }
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "buffer/depthwise_conv2d_kernel.cl", build_options_);
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    auto x_dims = param.x->dims();
    auto filter_dims = param.filter->dims();
    auto output_dims = param.output->dims();
H
HappyAngel 已提交
56
    auto paddings = *param.paddings;
Y
Yan Chunwei 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    auto strides = param.strides;

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* input_buf = param.x->data<float, cl::Buffer>();
    auto* filter_buf = param.filter->data<float, cl::Buffer>();
    auto* bias_buf = param.bias == nullptr
                         ? static_cast<cl::Buffer*>(nullptr)
                         : param.bias->data<float, cl::Buffer>();
    auto* output_buf =
        param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    cl_int status;
    auto numel = output_dims.production();
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, static_cast<const int>(numel));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *input_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(x_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(output_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(filter_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(filter_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *output_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *filter_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *bias_buf);
    CL_CHECK_FATAL(status);
    auto global_work_size = cl::NDRange(static_cast<size_t>(numel));
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(output_buf, event_);
  }

 private:
121
  std::string kernel_func_name_{"depthwise_conv2d"};
122
  std::string build_options_{"-DCL_DTYPE_float"};
Y
Yan Chunwei 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(depthwise_conv2d,
                     kOpenCL,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::opencl::DepthwiseConv2dCompute,
                     def)
    .BindInput("Input", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Output", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize();