graph.cc 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/rknpu/bridges/graph.h"
#include <rknpu/graph.h>
#include "lite/kernels/rknpu/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace rknpu {

int Graph::Add(const std::string& name, std::shared_ptr<Node> node) {
  auto it = nodes_.find(name);
  if (it != nodes_.end()) {
    // Only variable node can be shared with the same name
    if (!node->is_var() || !it->second.back()->is_var()) {
      LOG(FATAL) << "[RKNPU] Const or data node " << name << " is redefined.";
      return -1;
    }
  } else {
    auto ret = nodes_.insert(
        std::make_pair(name, std::vector<std::shared_ptr<Node>>()));
    CHECK(ret.second);
    it = ret.first;
  }
  it->second.push_back(node);
  return it->second.size();
}

// Const or data node
std::shared_ptr<Node> Graph::Add(const std::string& name,
                                 const Tensor& tensor,
                                 std::vector<int64_t> shape,
                                 PrecisionType precision,
                                 DataLayoutType layout,
                                 const QuantizationInfo& qnt) {
  std::shared_ptr<Node> node = nullptr;

  if (precision == PrecisionType::kUnk) {
    precision = tensor.precision();  // todo
  }

  if (precision == PrecisionType::kUnk) {
    if (qnt.enable_int8 && qnt.quant_bits == 8) {
      precision = PrecisionType::kInt8;
    } else if (!qnt.enable_int8) {
      precision = PrecisionType::kFloat;
    } else {
      LOG(ERROR) << "[rknpu]:Graph:: tensor precision unknown!";
    }
  }

  if (precision != tensor.precision()) {
    LOG(INFO) << "[rknpu]:Graph::Add: tensor precision mismatch!" << name << ":"
              << PrecisionToStr(precision) << " vs "
              << PrecisionToStr(tensor.precision());
  }

  if (tensor.persistable()) {
    // Const node
    node = std::make_shared<Node>(precision, layout, Node::Role::kConst);
    auto idx = Add(name, node);
    CHECK_EQ(idx, 1);
    auto attr = std::make_shared<rk::nn::TensorAttr>();
    attr->precision = ToRknpuPrecisionType(precision);
    attr->layout = ToRknpuDataLayoutType(layout);
    attr->role = rk::nn::TensorRole::CONST;
    attr->name = name;

    switch (precision) {
      case PrecisionType::kInt8:
        attr->qntBits = 8;
        attr->qntType = rk::nn::QuantizationType::SYMMETRIC;
        attr->qntParamSymmetric.scale = qnt.scale;
        break;
      case PrecisionType::kInt32:
        attr->qntBits = 32;
        attr->qntType = rk::nn::QuantizationType::SYMMETRIC;
        attr->qntParamSymmetric.scale = qnt.scale;
        break;
      default:
        break;
    }

    attr->dims.resize(shape.size());
    for (int i = 0; i < shape.size(); i++) {
      attr->dims[i] = shape[i];
    }

    LOG(INFO) << "[rknpu]:Graph::Add const node:" << name
              << " precision: " << PrecisionToStr(precision)
              << " layout: " << DataLayoutToStr(layout);
    node->set_data(
        rgraph_->CreateTensor(attr, const_cast<void*>(tensor.raw_data())));
  } else {
    // Data node
    node = Add(name, shape, precision, layout, qnt);
  }
  return node;
}

// Data node
std::shared_ptr<Node> Graph::Add(const std::string& name,
                                 std::vector<int64_t> shape,
                                 PrecisionType precision,
                                 DataLayoutType layout,
                                 const QuantizationInfo& qnt) {
  auto node = std::make_shared<Node>(precision, layout, Node::Role::kData);
  auto idx = Add(name, node);
  CHECK_EQ(idx, 1);
  auto attr = std::make_shared<rk::nn::TensorAttr>();
  attr->precision = ToRknpuPrecisionType(precision);
  attr->layout = ToRknpuDataLayoutType(layout);
  attr->role = rk::nn::TensorRole::VAR;
  attr->name = name;

  switch (precision) {
    case PrecisionType::kInt8:
      attr->qntBits = 8;
      attr->qntType = rk::nn::QuantizationType::SYMMETRIC;
      attr->qntParamSymmetric.scale = qnt.scale;
      break;
    case PrecisionType::kInt32:
      attr->qntBits = 32;
      attr->qntType = rk::nn::QuantizationType::SYMMETRIC;
      attr->qntParamSymmetric.scale = qnt.scale;
      break;

    default:
      break;
  }

  attr->dims.resize(shape.size());
  for (int i = 0; i < shape.size(); i++) {
    attr->dims[i] = shape[i];
  }

  LOG(INFO) << "[rknpu]:Graph::Add data node:" << name
            << " precision: " << PrecisionToStr(precision)
            << " layout: " << DataLayoutToStr(layout);
  node->set_data(rgraph_->CreateTensor(attr, nullptr));  // todo
  return node;
}

Graph::Graph() {
  rgraph_ = new rk::nn::Graph();
  CHECK(rgraph_ != nullptr);
}

Graph::~Graph() {}

}  // namespace rknpu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle