program.cc 10.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/core/program.h"
16
#include <unordered_map>
Y
Yan Chunwei 已提交
17 18 19
#include "lite/model_parser/cpp/block_desc.h"
#include "lite/model_parser/cpp/op_desc.h"
#include "lite/model_parser/cpp/var_desc.h"
J
juncaipeng 已提交
20
#include "lite/operators/conditional_block_op.h"
21
#include "lite/operators/subgraph_op.h"
Y
Yan Chunwei 已提交
22
#include "lite/operators/while_op.h"
23
#ifdef LITE_WITH_PRECISION_PROFILE
Y
Yan Chunwei 已提交
24 25 26 27 28 29 30 31 32 33 34
#include "lite/core/profile/precision_profiler.h"
#endif

namespace paddle {
namespace lite {

void RuntimeProgram::SaveOpInfosToProgram(cpp::ProgramDesc* desc) {
  CHECK(desc);
  // NOTE: RuntimeProgram do not has all meta info, so save model just update
  // upon origin model
  CHECK(desc->BlocksSize());
35 36
  auto main_block = desc->GetBlock<cpp::BlockDesc>(0);
  main_block->ClearOps();
Y
Yan Chunwei 已提交
37
  for (auto& node : instructions_) {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    auto op_type = node.op()->op_info()->Type();
    if (op_type == "subgraph") {
      auto subgraph_op = const_cast<operators::SubgraphOp*>(
          static_cast<const operators::SubgraphOp*>(node.op()));
      int sub_block_idx = subgraph_op->op_info()->GetAttr<int32_t>("sub_block");
      if (sub_block_idx < 0) {
        // It's a new subgraph op when its sub_block_idx < 0, Now we add its
        // subblock desc to the program desc, Then update its sub_block_idx to
        // the index of block desc of the program desc.
        sub_block_idx = desc->BlocksSize();
        auto sub_block_desc = subgraph_op->GetSubBlock();
        CHECK(sub_block_desc);
        auto new_block_desc = desc->AddBlock<cpp::BlockDesc>();
        *new_block_desc = *sub_block_desc;
        delete sub_block_desc;
        subgraph_op->mutable_op_info()->SetAttr<int32_t>("sub_block",
                                                         sub_block_idx);
        subgraph_op->SetSubBlock(new_block_desc);
        // Update main block desc after a new subblock desc is added
        main_block = desc->GetBlock<cpp::BlockDesc>(0);
      }
    }
    auto op = main_block->AddOp<cpp::OpDesc>();
Y
Yan Chunwei 已提交
61 62 63 64 65
    *op = *node.op()->op_info();
    op->SetAttr(kKernelTypeAttr, node.kernel()->SerializedKernelType());
  }
}

66 67 68 69 70 71 72 73 74
// `UpdateVarsOfProgram` will remove unused var_descs and add new created
// vars' descs in the block 0. Now, the type of a new created var can only
// be LOD_TENSOR.
void RuntimeProgram::UpdateVarsOfProgram(cpp::ProgramDesc* desc) {
  CHECK(desc);
  CHECK(desc->BlocksSize());
  std::unordered_map<std::string, cpp::VarDesc> origin_var_maps;
  auto& main_block = *desc->GetBlock<cpp::BlockDesc>(0);
  auto var_size = main_block.VarsSize();
75
  for (size_t i = 0; i < var_size; i++) {
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    auto v = main_block.GetVar<cpp::VarDesc>(i);
    auto name = v->Name();
    origin_var_maps.emplace(name, *v);
  }

  main_block.ClearVars();
  for (auto& node : instructions_) {
    auto* op = const_cast<lite::OpLite*>(node.op());
    auto* kernel = node.kernel();
    auto* scope = op->scope();
    auto in_names = op->op_info()->input_names();
    auto out_names = op->op_info()->output_names();
    for (auto& in_name : in_names) {
      auto it = origin_var_maps.find(in_name);
      if (it != origin_var_maps.end()) {
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName((it->second).Name());
        v->SetType((it->second).GetType());
        v->SetPersistable((it->second).Persistable());
      } else {
        // New created vars must be LOD_TENSOR
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName(in_name);
        v->SetType(cpp::VarDesc::Type::LOD_TENSOR);
        std::string in_arg_name;
        op->op_info()->GetInputArgname(in_name, &in_arg_name);
        auto type = kernel->GetInputDeclType(in_arg_name);
        if (type->IsTensor()) {
          auto tensor = scope->FindVar(in_name)->GetMutable<Tensor>();
          v->SetPersistable(tensor->persistable());
        } else {
          CHECK(false) << "unsupported var type";
        }
      }
    }

    for (auto& out_name : out_names) {
      auto it = origin_var_maps.find(out_name);
      if (it != origin_var_maps.end()) {
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName((it->second).Name());
        v->SetType((it->second).GetType());
        v->SetPersistable((it->second).Persistable());
      } else {
        // New created vars must be LOD_TENSOR
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName(out_name);
        v->SetType(cpp::VarDesc::Type::LOD_TENSOR);
        std::string out_arg_name;
        op->op_info()->GetOutputArgname(out_name, &out_arg_name);
        auto type = kernel->GetOutputDeclType(out_arg_name);
        if (type->IsTensor()) {
          auto tensor = scope->FindVar(out_name)->GetMutable<Tensor>();
          v->SetPersistable(tensor->persistable());
        } else {
          CHECK(false) << "unsupported var type";
        }
      }
    }
  }
}

Y
Yan Chunwei 已提交
138
void RuntimeProgram::Run() {
139 140 141 142 143 144
#ifdef LITE_WITH_PRECISION_PROFILE
  auto inst_precision_profiler = paddle::lite::profile::PrecisionProfiler();
  std::string precision_profiler_summary =
      inst_precision_profiler.GetSummaryHeader();
#endif

Y
Yan Chunwei 已提交
145
  for (auto& inst : instructions_) {
146
#ifndef LITE_WITH_FPGA
147
    if (inst.is_feed_fetch_op()) continue;
148 149 150 151 152
#endif
#ifdef LITE_WITH_CUDA
    if (inst.need_sync()) {
      inst.Sync();
    }
153
#endif
Y
Yan Chunwei 已提交
154
    inst.Run();
155
#ifdef LITE_WITH_PRECISION_PROFILE
156
#ifndef LITE_WITH_FPGA
157 158
    precision_profiler_summary +=
        inst_precision_profiler.GetInstPrecision(&inst);
159
#endif
160
#endif  // LITE_WITH_PRECISION_PROFILE
Y
Yan Chunwei 已提交
161
  }
162
#ifdef LITE_WITH_PROFILE
163
  LOG(INFO) << "\n" << profiler_.Summary(profile::Type::kDispatch, false, 0);
164
#endif
165 166
#ifdef LITE_WITH_PRECISION_PROFILE
  LOG(INFO) << "\n" << precision_profiler_summary;
167
#endif
Y
Yan Chunwei 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
}

void Program::Build(const cpp::ProgramDesc& prog) {
  CHECK(ops_.empty()) << "Executor duplicate Build found";

  // Create operators.
  auto program = prog;
  CHECK(program.BlocksSize());
  auto& main_block = *program.GetBlock<cpp::BlockDesc>(0);
  for (size_t i = 0; i < main_block.OpsSize(); ++i) {
    auto& op_desc = *main_block.GetOp<cpp::OpDesc>(i);
    auto op_type = op_desc.Type();
    // if (op_type == "feed" || op_type == "fetch") continue;
    VLOG(4) << "create Op [" << op_type << "]";
    auto op = LiteOpRegistry::Global().Create(op_type);
    CHECK(op) << "no Op found for " << op_type;
184 185
    if (op_type == "while" || op_type == "conditional_block" ||
        op_type == "subgraph") {
186
      auto sub_block_idx = op_desc.GetAttr<int32_t>("sub_block");
187 188 189 190
      CHECK(sub_block_idx >= 0 && sub_block_idx < program.BlocksSize())
          << "Invalid attribute sub_block(" << sub_block_idx << ") for "
          << op_type;
      auto sub_block_desc =
Y
Yan Chunwei 已提交
191 192
          const_cast<cpp::ProgramDesc&>(prog).GetBlock<cpp::BlockDesc>(
              sub_block_idx);
193
      CHECK(sub_block_desc);
J
juncaipeng 已提交
194
      if (op_type == "while") {
195 196
        static_cast<operators::WhileOpLite*>(op.get())->SetSubBlock(
            sub_block_desc);
J
juncaipeng 已提交
197 198
      } else if (op_type == "conditional_block") {
        static_cast<operators::ConditionalBlockOpLite*>(op.get())->SetSubBlock(
199 200 201 202
            sub_block_desc);
      } else if (op_type == "subgraph") {
        static_cast<operators::SubgraphOp*>(op.get())->SetSubBlock(
            sub_block_desc);
J
juncaipeng 已提交
203
      }
Y
Yan Chunwei 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    }
    ops_.emplace_back(std::move(op));
    ops_.back()->Attach(op_desc, exec_scope_);
  }
}

void Program::PrepareWorkspace(const cpp::ProgramDesc& prog) {
  CHECK(!exec_scope_) << "Duplicate PrepareWorkspace found";
  exec_scope_ = &scope_->NewScope();
  // Create Feed and Fetch var.
  scope_->Var("feed")->GetMutable<std::vector<lite::Tensor>>();
  scope_->Var("fetch")->GetMutable<std::vector<lite::Tensor>>();
  tmp_vars_.push_back("feed");
  tmp_vars_.push_back("fetch");

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  auto VarPrecision2KernlPrecision =
      [](const lite::VarDescAPI::Type& type) -> PrecisionType {
    switch (type) {
      case lite::VarDescAPI::Type::FP32:
        return PRECISION(kFloat);
      case lite::VarDescAPI::Type::FP16:
        return PRECISION(kFP16);
      case lite::VarDescAPI::Type::INT8:
        return PRECISION(kInt8);
      case lite::VarDescAPI::Type::INT16:
        return PRECISION(kInt16);
      case lite::VarDescAPI::Type::INT32:
        return PRECISION(kInt32);
      case lite::VarDescAPI::Type::INT64:
        return PRECISION(kInt64);
      default:
        // LOG(FATAL) << "not supported type: " << static_cast<int>(type);
        return PRECISION(kUnk);
    }
  };

Y
Yan Chunwei 已提交
240 241 242 243 244 245 246
  auto program = prog;
  CHECK(program.BlocksSize());
  for (size_t b = 0; b < program.BlocksSize(); ++b) {
    auto& main_block = *program.GetBlock<cpp::BlockDesc>(b);
    for (size_t i = 0; i < main_block.VarsSize(); ++i) {
      auto& var_desc = *main_block.GetVar<cpp::VarDesc>(i);
      if (!var_desc.Persistable()) {
247 248 249 250 251 252
        if (var_desc.GetType() == lite::VarDescAPI::Type::LOD_TENSOR &&
            VarPrecision2KernlPrecision(var_desc.GetDataType()) !=
                PRECISION(kUnk)) {
          var_data_type_[var_desc.Name()] =
              VarPrecision2KernlPrecision(var_desc.GetDataType());
        }
Y
Yan Chunwei 已提交
253
        tmp_vars_.push_back(var_desc.Name());
254 255 256
        VLOG(4) << "var name: " << var_desc.Name() << " type is "
                << static_cast<int>(var_desc.GetType()) << " data type is "
                << static_cast<int>(var_desc.GetDataType());
Y
Yan Chunwei 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270
        exec_scope_->Var(var_desc.Name());
        if (b > 0) {
          VLOG(4) << "var: " << var_desc.Name();
        }
      } else {
        if (var_desc.Name() == "feed" || var_desc.Name() == "fetch") continue;
        weights_.push_back(var_desc.Name());
        if (var_desc.Persistable()) scope_->Var(var_desc.Name());
      }
    }
  }
}

void Instruction::Run() {
271 272 273 274 275 276 277
#ifdef LITE_WITH_PROFILE
  CHECK(profiler_) << "Profiler pointer of kernel can not be nullptr. "
                      "When LITE_WITH_PROFILE is defined, please set a "
                      "Profiler for Instruction.";
  profiler_->StartTiming(
      profile::Type::kCreate, profile_id_, kernel_->mutable_context());
#endif
Y
Yan Chunwei 已提交
278 279
  CHECK(op_) << "op null";
  CHECK(kernel_) << "kernel null";
280

Y
Yan Chunwei 已提交
281 282 283 284 285
  if (first_epoch_) {
    first_epoch_ = false;
    CHECK(op_->CheckShape());
  }

286 287 288
  if (op_->run_once() && has_run_) {
    return;
  }
289

290
  op_->InferShape();
Y
Yan Chunwei 已提交
291 292 293 294 295 296 297 298 299 300 301
  kernel_->Launch();
  has_run_ = true;
}

STL::ostream& operator<<(STL::ostream& os, const Instruction& other) {
  os << other.kernel_->summary() << "\t(" << other.kernel_->doc() << ")";
  return os;
}

}  // namespace lite
}  // namespace paddle