executor_for_test.h 3.6 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
E
eclipsess 已提交
18
#include <vector>
L
liuruilong 已提交
19

Z
zhaojiaying01 已提交
20
#include "./io.h"
L
liuruilong 已提交
21
#include "common/log.h"
Z
zhaojiaying01 已提交
22
#include "framework/op_registry.h"
L
liuruilong 已提交
23 24
#include "operators/conv_op.h"
#include "operators/pool_op.h"
E
eclipsess 已提交
25
#include "operators/relu_op.h"
E
eclipsess 已提交
26
#include "operators/reshape_op.h"
W
wangliu 已提交
27
#include "operators/sigmoid_op.h"
L
liuruilong 已提交
28
#include "operators/softmax_op.h"
E
eclipsess 已提交
29
#include "operators/transpose_op.h"
L
liuruilong 已提交
30

L
liuruilong 已提交
31
using paddle_mobile::Executor;
L
liuruilong 已提交
32 33 34 35 36 37 38 39 40 41 42 43
using paddle_mobile::framework::BlockDesc;
using paddle_mobile::framework::DDim;
using paddle_mobile::framework::LoDTensor;
using paddle_mobile::framework::OpDesc;
using paddle_mobile::framework::Program;
using paddle_mobile::framework::Tensor;
using paddle_mobile::framework::Variable;
using std::string;
template <typename DeviceType, typename OpType>
class Executor4Test : public Executor<DeviceType> {
 public:
  Executor4Test(Program<DeviceType> p, string op_type)
L
liuruilong 已提交
44 45 46 47 48 49 50 51
      : Executor<DeviceType>() {
    this->program_ = p;
    if (this->use_optimize_) {
      this->to_predict_program_ = this->program_.optimizeProgram;
    } else {
      this->to_predict_program_ = this->program_.originProgram;
    }

L
liuruilong 已提交
52 53 54 55 56 57 58 59 60 61
    if (this->program_.originProgram == nullptr) {
      LOG(paddle_mobile::LogLevel::kLOG_ERROR)
          << "to_predict_program_ == nullptr";
    }
    const std::vector<std::shared_ptr<BlockDesc>> blocks =
        this->to_predict_program_->Blocks();
    for (std::shared_ptr<BlockDesc> block_desc : blocks) {
      std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
      for (std::shared_ptr<OpDesc> op : ops) {
        if (op->Type() == op_type) {
E
eclipsess 已提交
62
          /// test first meeting op in program
Z
zhaojiaying01 已提交
63 64 65 66 67 68
          std::shared_ptr<paddle_mobile::framework::OperatorBase<DeviceType>>
              op_ptr = paddle_mobile::framework::OpRegistry<
                  paddle_mobile::CPU>::CreateOp(op->Type(), op->GetInputs(),
                                                op->GetOutputs(),
                                                op->GetAttrMap(),
                                                this->program_.scope);
L
liuruilong 已提交
69 70 71 72 73 74 75 76 77 78 79
          this->ops_of_block_[*block_desc.get()].push_back(op_ptr);
          break;
        }
      }
    }
  }

  std::shared_ptr<Tensor> predict(const Tensor &t, string input, string output,
                                  const DDim &dDim) {
    auto scope = this->program_.scope;
    Variable *g_feed_value = scope->Var(input);
W
wangliu 已提交
80
    auto tensor = g_feed_value->GetMutable<LoDTensor>();
L
liuruilong 已提交
81 82 83
    tensor->ShareDataWith(t);

    Variable *con_output = scope->Var(output);
W
wangliu 已提交
84
    auto *output_tensor = con_output->GetMutable<LoDTensor>();
L
liuruilong 已提交
85
    output_tensor->mutable_data<float>(dDim);
W
wangliu 已提交
86
    std::shared_ptr<LoDTensor> out_tensor = std::make_shared<LoDTensor>();
L
liuruilong 已提交
87 88
    out_tensor.reset(output_tensor);

L
liuruilong 已提交
89 90 91 92 93 94 95 96
    std::shared_ptr<paddle_mobile::framework::BlockDesc> to_predict_block =
        this->to_predict_program_->Block(0);
    for (int j = 0; j < this->ops_of_block_[*to_predict_block.get()].size();
         ++j) {
      auto op = this->ops_of_block_[*to_predict_block.get()][j];
      op->Run();
    }

L
liuruilong 已提交
97 98 99
    return out_tensor;
  }
};