paddle_inference_api.h 3.9 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

/*
 * This file contains the definition of a simple Inference API for Paddle.
 *
 * ATTENTION: It requires some C++ features, for lower version C++ or C, we
 * might release another API.
 */

#pragma once

#include <cassert>
#include <memory>
#include <string>
#include <vector>

namespace paddle_mobile {

enum PaddleDType {
  FLOAT32,
  INT64,
};

class PaddleBuf {
 public:
  PaddleBuf() = default;
  PaddleBuf(PaddleBuf&& other);
  // Copy only available when memory is managed externally.
  explicit PaddleBuf(const PaddleBuf&);
  PaddleBuf& operator=(const PaddleBuf&);
  // Do not own the memory.
  PaddleBuf(void* data, size_t length)
      : data_(data), length_(length), memory_owned_{false} {}
  // Own memory.
  PaddleBuf(size_t length)
      : data_(new char[length]), length_(length), memory_owned_(true) {}
  // Resize to `length` bytes.
  void Resize(size_t length);
  // Reset to external memory.
  void Reset(void* data, size_t length);
  bool empty() const { return length_ == 0; }
  void* data() const { return data_; }
  size_t length() const { return length_; }

  ~PaddleBuf() { Free(); }

 private:
  void Free();
  void* data_{nullptr};  // pointer to the data memory.
  size_t length_{0};     // number of memory bytes.
  bool memory_owned_{true};
};

struct PaddleTensor {
  PaddleTensor() = default;
  std::string name;  // variable name.
  std::vector<int> shape;
  // TODO(Superjomn) for LoD support, add a vector<vector<int>> field if needed.
  PaddleBuf data;  // blob of data.
  PaddleDType dtype;
};

enum class PaddleEngineKind {
  kPaddleMobile,
  // TODO(Superjomn) support following engines latter.
  // kTensorRT,           // Use TensorRT for inference.
  // kAutoMixedAnakin,    // Automatically mix Fluid with Anakin.
  // kAutoMixedTensorRT,  // Automatically mix Fluid with TensorRT.
};

/*
 * A simple Inference API for Paddle. Currently this API can be used by
 * non-sequence scenerios.
 */
class PaddlePredictor {
 public:
  struct Config;
  PaddlePredictor() = default;
  PaddlePredictor(const PaddlePredictor&) = delete;
  PaddlePredictor& operator=(const PaddlePredictor&) = delete;

  // Predict an record.
  // The caller should be responsible for allocating and releasing the memory of
  // `inputs`. `inputs` should be available until Run returns. Caller should be
  // responsible for the output tensor's buffer, either allocated or passed from
  // outside.
  virtual bool Run(const std::vector<PaddleTensor>& inputs,
                   std::vector<PaddleTensor>* output_data,
                   int batch_size = -1) = 0;

  // Destroy the Predictor.
  virtual ~PaddlePredictor() = default;

  // The common configs for all the predictors.
  struct Config {
    std::string model_dir;  // path to the model directory.
  };
};

struct PaddleMobileConfig : public PaddlePredictor::Config {
  enum Precision { FP32 = 0 };
  enum Device { kCPU = 0, kFPGA = 1, kGPU_MALI = 2 };

  enum Precision precision;
  enum Device device;

  int batch_size = 1;
  bool optimize = true;
  bool quantification = false;
  int thread_num = 1;
  std::string prog_file;
  std::string param_file;
};

// A factory to help create different predictors.
template <typename ConfigT,
          PaddleEngineKind engine = PaddleEngineKind::kPaddleMobile>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);

}  // namespace paddle_mobile