conv_transpose_arm_func.h 3.7 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_TRANSPOSE

#include <vector>

#include "framework/ddim.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
#include "operators/op_param.h"

#pragma once

namespace paddle_mobile {
namespace operators {

template <typename P>
N
nhzlx 已提交
31
void ConvTransposeCompute(const ConvTransposeParam<CPU> &param) {
L
liuruilong 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor *output = param.Output();

  auto strides = param.Strides();
  auto paddings = param.Paddings();
  auto dilations = param.Dilations();
  auto groups = param.Groups();

  const int batch_size = input->dims()[0];

  std::vector<int64_t> input_shape_vec = framework::vectorize(input->dims());
  std::vector<int64_t> filter_shape_vec = framework::vectorize(filter.dims());

  size_t data_dim = filter_shape_vec.size() - 2;

  // 5 或者 7
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);

  // output c / groups
  col_shape_vec[0] = output->dims()[1] / groups;
  for (size_t i = 0; i < data_dim; ++i) {
    // filter shape  filter h  filter w
    col_shape_vec[i + 1] = filter_shape_vec[i + 2];
    // input shape  input h  input w
    col_shape_vec[i + 1 + data_dim] = input_shape_vec[i + 2];
  }

  framework::DDim col_shape(framework::make_ddim(col_shape_vec));
  framework::DDim col_matrix_shape =
      framework::flatten_to_2d(col_shape, data_dim + 1);

  Tensor col;
  col.mutable_data<P>(col_shape);

  Tensor col_matrix;
  col_matrix.ShareDataWith(col);
  col_matrix.Resize(col_matrix_shape);

  framework::DDim output_shape =
      framework::slice_ddim(output->dims(), 1, output->dims().size());

  framework::DDim input_matrix_shape = {input->dims()[1], col_matrix_shape[1]};

  // filter size: (m, c/g * k_h * k_w) or (m, c/g * k_d * k_h * k_w)
  framework::DDim filter_matrix_shape = {input->dims()[1], col_matrix_shape[0]};
  filter.Resize(filter_matrix_shape);

  output->mutable_data<P>();

  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Col2ImFunctor<math::ColFormat::kCFO, CPU, P> col2im;
  math::Col2VolFunctor<CPU, P> col2vol;

  for (int i = 0; i < batch_size; ++i) {
    Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape);
    Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape);

    for (int g = 0; g < groups; ++g) {
      Tensor in_slice = input_batch.Slice(g * in_step, (g + 1) * in_step);
      Tensor filter_slice = filter.Slice(g * in_step, (g + 1) * in_step);
      Tensor out_slice = output_batch.Slice(g * out_step, (g + 1) * out_step);

      math::matmul(filter_slice, true, in_slice, false, static_cast<P>(1.0),
                   &col_matrix, static_cast<P>(0.0));
      if (data_dim == 2U) {
        col2im(col, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &out_slice);

      } else if (data_dim == 3U) {
        col2vol(col, dilations, strides, paddings, &out_slice);
      }
    }
  }
}

}  // namespace operators
}  // namespace paddle_mobile
#endif