depthwise_conv_kernel.cpp 3.6 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef DEPTHWISECONV_OP

#include "operators/kernel/depthwise_conv_kernel.h"
#include "operators/kernel/central-arm-func/depthwise_conv_arm_func.h"

namespace paddle_mobile {
namespace operators {

template <>
bool DepthwiseConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
  DLOG << " depthwise conv kernel init begin ";
  PADDLE_MOBILE_ENFORCE(
L
liuruilong 已提交
27
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
L
liuruilong 已提交
28
          param->Paddings()[0] == param->Paddings()[1],
L
liuruilong 已提交
29
      "need equal");
L
liuruilong 已提交
30 31
  param->Filter()->InitCLImage(cl_helper_.CLContext(),
                               this->cl_helper_.CLCommandQueue());
L
liuruilong 已提交
32 33 34 35 36 37 38 39 40
  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);
  this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_bn_relu_kernel.cl");
  DLOG << " depthwise conv kernel init end ";
  return true;
}

template <>
L
liuruilong 已提交
41 42
void DepthwiseConvKernel<GPU_CL, float>::Compute(
    const ConvParam<GPU_CL> &param) {
L
liuruilong 已提交
43 44 45 46 47 48 49
  auto kernel = this->cl_helper_.KernelAt(0);
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();
Z
zhaojiaying01 已提交
50
  auto output = param.Output()->GetCLImage();
L
liuruilong 已提交
51 52 53 54 55 56 57 58 59
  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = param.Input()->CBlock();
  int dilation = param.Dilations()[0];
  int input_width = param.Input()->WidthOfOneBlock();
  int input_height = param.Input()->HeightOfOneBlock();
  int output_width = param.Output()->WidthOfOneBlock();
  int output_height = param.Output()->HeightOfOneBlock();

L
liuruilong 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  cl_int status;

  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);

  CL_CHECK_ERRORS(status);

L
liuruilong 已提交
79 80
//  cl_event out_event = param.Output()->GetClEvent();
//  cl_event wait_event = param.Input()->GetClEvent();
L
liuruilong 已提交
81

L
liuruilong 已提交
82
  status =
L
liuruilong 已提交
83
      clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
L
liuruilong 已提交
84
                             default_work_size.data(), NULL, 0, NULL, NULL);
L
liuruilong 已提交
85 86

  CL_CHECK_ERRORS(status);
L
liuruilong 已提交
87 88 89 90 91 92 93
}

template class DepthwiseConvKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

L
liuruilong 已提交
94
#endif