conv_op.cc 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/operators/conv_op.h"
16 17 18
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/graph.h"
#include "lite/kernels/xpu/bridges/utility.h"
19 20 21

namespace paddle {
namespace lite {
22
namespace subgraph {
23 24
namespace xpu {

25 26 27 28
int ConvConverter(void* ctx, OpLite* op) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
29 30
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
31 32
  auto scope = op->scope();
  VLOG(3) << "[XPU] Converting " << op_type << "... ";
33

34
  // Get input, filter and op attributes
35
  auto input_var_name = op_info->Input("Input").front();
36
  auto input = scope->FindVar(input_var_name)->GetMutable<Tensor>();
37 38
  auto input_dims = input->dims();
  auto filter_var_name = op_info->Input("Filter").front();
39
  auto filter = scope->FindVar(filter_var_name)->GetMutable<Tensor>();
40
  auto filter_dims = filter->dims();
41
  auto output_var_name = op_info->Output("Output").front();
42 43 44 45 46 47 48 49 50
  auto bs = input_dims[0];
  auto oc = filter_dims[0];
  CHECK_EQ(input_dims.size(), 4);
  CHECK_EQ(filter_dims.size(), 4);
  auto strides = op_info->GetAttr<std::vector<int>>("strides");
  auto paddings = op_info->GetAttr<std::vector<int>>("paddings");
  auto groups = op_info->GetAttr<int>("groups");
  auto dilations = op_info->GetAttr<std::vector<int>>("dilations");
  auto fuse_relu = op_info->GetAttr<bool>("fuse_relu");
H
HappyAngel 已提交
51 52
  CHECK_EQ(strides.size(), 2L);
  CHECK_EQ(dilations.size(), 2L);
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

  if (paddings.size() == 2L) {
    for (size_t i = 0; i < strides.size(); ++i) {
      int copy_pad = *(paddings.begin() + 2 * i);
      paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
    }
  }
  CHECK_EQ(paddings.size(), 4L)
      << "Paddings size should be the same or twice as the input size.";

  std::string padding_algorithm("");
  if (op_info->HasAttr("padding_algorithm")) {
    padding_algorithm = op_info->GetAttr<std::string>("padding_algorithm");
  }
  operators::UpdatePaddingAndDilation(&paddings,
                                      &dilations,
                                      strides,
                                      padding_algorithm,
                                      input_dims,
                                      filter_dims);

74 75 76 77
  std::vector<int64_t> output_shape({bs, oc});
  for (size_t i = 0; i < 2; i++) {
    const int dkernel = dilations[i] * (filter_dims[2 + i] - 1) + 1;
    output_shape.push_back(
H
HappyAngel 已提交
78 79 80
        (input_dims[i + 2] + paddings[2 * i] + paddings[2 * i + 1] - dkernel) /
            strides[i] +
        1);
81 82 83
  }
  DDim output_dims(output_shape);

84 85
  // Create filter node
  auto filter_const_node = graph->AddNode(filter_var_name, *filter);
86

87
  // Create conv node and set input, filter, bias nodes and attributes
88
  auto conv_attrs = xtcl::make_node<xtcl::network::Conv2DAttrs>();
89 90 91
  conv_attrs->strides = std::move(CvtShape(strides));
  conv_attrs->padding = std::move(CvtShape(paddings));
  conv_attrs->dilation = std::move(CvtShape(dilations));
92 93 94 95 96 97 98
  conv_attrs->groups = groups;
  // conv_attrs->channels = nullptr;
  conv_attrs->kernel_size = std::move(xtcl::Array<xtcl::xIndexExpr>(nullptr));
  conv_attrs->data_layout = "NCHW";
  conv_attrs->kernel_layout = "OIHW";
  conv_attrs->out_layout = "";
  // conv_attrs->out_dtype = "";
99 100 101 102
  auto conv_node = graph->AddNode(
      output_var_name,
      graph->builder_.CreateConv2D(
          *graph->GetNode(input_var_name), *filter_const_node, conv_attrs));
103

104
  // Create bias node if exists bias
105 106 107 108
  // supports the bias nodes with the following dimensions
  // 0: {oc}
  // 1: {1, oc, oh, ow}
  // 2: {n, oc, oh, ow}
109
  if (HasInputArg(op_info, scope, "Bias")) {
110
    auto bias_var_name = op_info->Input("Bias").front();
111
    auto* bias = scope->FindVar(bias_var_name)->GetMutable<Tensor>();
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    auto bias_dims = bias->dims();
    auto bias_data_size = bias_dims.production();
    auto output_data_size = output_dims.production();
    std::vector<int64_t> bias_shape;
    bool is_channel_bias = false;
    if (bias_data_size == oc) {
      // 0: {oc}
      bias_shape = {oc};
      is_channel_bias = true;
    } else if (bias_data_size == output_data_size / bs) {
      // 1: {1, oc, oh, ow}
      bias_shape = {1, output_dims[1], output_dims[2], output_dims[3]};
    } else if (bias_data_size == output_data_size) {
      // 2: {n, oc, oh, ow}
      bias_shape = output_dims.Vectorize();
    } else {
128
      LOG(ERROR) << "[XPU] Bias dimension " << bias_dims
129 130 131 132
                 << " isn't supported in conv2d Op when output dimension is "
                 << output_dims;
    }
    std::shared_ptr<xtcl::xExpr> bias_node = nullptr;
133 134 135
    if (graph->HasNode(bias_var_name)) {
      // Bias node from input node
      bias_node = graph->GetNode(bias_var_name);
136
    } else {
137 138
      // Bias node with const tensor
      bias_node = graph->AddNode(bias_var_name, *bias, bias_shape);
139 140 141
    }
    std::shared_ptr<xtcl::xExpr> add_node = nullptr;
    if (is_channel_bias) {
142 143 144
      add_node = graph->AddNode(
          output_var_name,
          graph->builder_.CreateBiasAdd(*conv_node, 1, *bias_node));
145
    } else {
146 147 148
      add_node = graph->AddNode(
          output_var_name,
          graph->builder_.CreateBinaryOp("add", *conv_node, *bias_node));
149 150 151 152 153
    }
    conv_node = add_node;
  }

  if (fuse_relu) {
154 155
    // Append relu node if fuse_relu is true
    graph->AddNode(output_var_name, graph->builder_.CreateRelu(*conv_node));
156
  }
157
  return REBUILD_WHEN_SHAPE_CHANGED;
158 159 160
}

}  // namespace xpu
161
}  // namespace subgraph
162 163 164
}  // namespace lite
}  // namespace paddle

165 166 167 168 169 170
REGISTER_SUBGRAPH_BRIDGE(XPU,
                         conv2d,
                         paddle::lite::subgraph::xpu::ConvConverter);
REGISTER_SUBGRAPH_BRIDGE(XPU,
                         depthwise_conv2d,
                         paddle::lite::subgraph::xpu::ConvConverter);