yolo_box_compute.cu 9.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <vector>
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/yolo_box_compute.h"
W
Wilber 已提交
18
// #include "lite/core/target_wrapper.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

__host__ __device__ inline int GetEntryIndex(int batch,
                                             int an_idx,
                                             int hw_idx,
                                             int an_num,
                                             int an_stride,
                                             int stride,
                                             int entry) {
  return (batch * an_num + an_idx) * an_stride + entry * stride + hw_idx;
}

template <typename T>
__host__ __device__ inline T sigmoid(T x) {
  return 1.0 / (1.0 + std::exp(-x));
}

template <typename T>
__host__ __device__ inline void GetYoloBox(T* box,
                                           const T* x,
                                           const int* anchors,
                                           int i,
                                           int j,
                                           int an_idx,
                                           int grid_size,
                                           int input_size,
                                           int index,
                                           int stride,
                                           int img_height,
                                           int img_width) {
  box[0] = (i + sigmoid<T>(x[index])) * img_width / grid_size;
  box[1] = (j + sigmoid<T>(x[index + stride])) * img_height / grid_size;
  box[2] = std::exp(x[index + 2 * stride]) * anchors[2 * an_idx] * img_width /
           input_size;
  box[3] = std::exp(x[index + 3 * stride]) * anchors[2 * an_idx + 1] *
           img_height / input_size;
}

template <typename T>
__host__ __device__ inline void CalcDetectionBox(T* boxes,
                                                 T* box,
                                                 const int box_idx,
                                                 const int img_height,
                                                 const int img_width) {
  boxes[box_idx] = box[0] - box[2] / 2;
  boxes[box_idx + 1] = box[1] - box[3] / 2;
  boxes[box_idx + 2] = box[0] + box[2] / 2;
  boxes[box_idx + 3] = box[1] + box[3] / 2;

  boxes[box_idx] = boxes[box_idx] > 0 ? boxes[box_idx] : static_cast<T>(0);
  boxes[box_idx + 1] =
      boxes[box_idx + 1] > 0 ? boxes[box_idx + 1] : static_cast<T>(0);
  boxes[box_idx + 2] = boxes[box_idx + 2] < img_width - 1
                           ? boxes[box_idx + 2]
                           : static_cast<T>(img_width - 1);
  boxes[box_idx + 3] = boxes[box_idx + 3] < img_height - 1
                           ? boxes[box_idx + 3]
                           : static_cast<T>(img_height - 1);
}

template <typename T>
__host__ __device__ inline void CalcLabelScore(T* scores,
                                               const T* input,
                                               const int label_idx,
                                               const int score_idx,
                                               const int class_num,
                                               const T conf,
                                               const int stride) {
  for (int i = 0; i < class_num; ++i) {
    scores[score_idx + i] = conf * sigmoid<T>(input[label_idx + i * stride]);
  }
}

template <typename T>
__global__ void KeYoloBoxFw(const T* input,
W
Wilber 已提交
98
                            const int* imgsize,
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                            T* boxes,
                            T* scores,
                            const float conf_thresh,
                            const int* anchors,
                            const int n,
                            const int h,
                            const int w,
                            const int an_num,
                            const int class_num,
                            const int box_num,
                            int input_size) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  T box[4];
  for (; tid < n * box_num; tid += stride) {
    int grid_num = h * w;
    int i = tid / box_num;
    int j = (tid % box_num) / grid_num;
    int k = (tid % grid_num) / w;
    int l = tid % w;

    int an_stride = (5 + class_num) * grid_num;
W
Wilber 已提交
121 122
    int img_height = imgsize[2 * i];
    int img_width = imgsize[2 * i + 1];
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

    int obj_idx =
        GetEntryIndex(i, j, k * w + l, an_num, an_stride, grid_num, 4);
    T conf = sigmoid<T>(input[obj_idx]);
    if (conf < conf_thresh) {
      continue;
    }

    int box_idx =
        GetEntryIndex(i, j, k * w + l, an_num, an_stride, grid_num, 0);
    GetYoloBox<T>(box,
                  input,
                  anchors,
                  l,
                  k,
                  j,
                  h,
                  input_size,
                  box_idx,
                  grid_num,
                  img_height,
                  img_width);
    box_idx = (i * box_num + j * grid_num + k * w + l) * 4;
    CalcDetectionBox<T>(boxes, box, box_idx, img_height, img_width);

    int label_idx =
        GetEntryIndex(i, j, k * w + l, an_num, an_stride, grid_num, 5);
    int score_idx = (i * box_num + j * grid_num + k * w + l) * class_num;
    CalcLabelScore<T>(
        scores, input, label_idx, score_idx, class_num, conf, grid_num);
  }
}

void YoloBoxCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<CUDAContext>();
  auto stream = ctx.exec_stream();

  lite::Tensor* X = param.X;
  lite::Tensor* ImgSize = param.ImgSize;
  lite::Tensor* Boxes = param.Boxes;
  lite::Tensor* Scores = param.Scores;
  std::vector<int> anchors = param.anchors;
  int class_num = param.class_num;
  float conf_thresh = param.conf_thresh;
  int downsample_ratio = param.downsample_ratio;

  const float* input = X->data<float>();
W
Wilber 已提交
171
  const int* imgsize = ImgSize->data<int>();
172 173
  float* boxes = Boxes->mutable_data<float>(TARGET(kCUDA));
  float* scores = Scores->mutable_data<float>(TARGET(kCUDA));
174 175 176 177
  TargetWrapperCuda::MemsetAsync(
      boxes, 0, Boxes->numel() * sizeof(float), stream);
  TargetWrapperCuda::MemsetAsync(
      scores, 0, Scores->numel() * sizeof(float), stream);
178 179 180 181 182 183 184 185

  const int n = X->dims()[0];
  const int h = X->dims()[2];
  const int w = X->dims()[3];
  const int box_num = Boxes->dims()[1];
  const int an_num = anchors.size() / 2;
  int input_size = downsample_ratio * h;

186
  anchors_.Resize({static_cast<int64_t>(anchors.size())});
187
  int* d_anchors = anchors_.mutable_data<int>(TARGET(kCUDA));
188 189 190 191 192
  TargetWrapperCuda::MemcpyAsync(d_anchors,
                                 anchors.data(),
                                 sizeof(int) * anchors.size(),
                                 IoDirection::HtoD,
                                 stream);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

  int threads = 512;
  int blocks = (n * box_num + threads - 1) / threads;
  blocks = blocks > 8 ? 8 : blocks;

  KeYoloBoxFw<float><<<blocks, threads, 0, stream>>>(input,
                                                     imgsize,
                                                     boxes,
                                                     scores,
                                                     conf_thresh,
                                                     d_anchors,
                                                     n,
                                                     h,
                                                     w,
                                                     an_num,
                                                     class_num,
                                                     box_num,
                                                     input_size);
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(yolo_box,
                     kCUDA,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::cuda::YoloBoxCompute,
                     def)
Z
Zhaolong Xing 已提交
226 227 228 229 230 231
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindInput("ImgSize",
               {LiteType::GetTensorTy(TARGET(kCUDA),
232
                                      PRECISION(kInt32),
Z
Zhaolong Xing 已提交
233 234 235 236 237 238 239 240 241
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Boxes",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
    .BindOutput("Scores",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
242
    .Finalize();