io.cpp 12.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io.h"
#include <vector>
D
dolphin8 已提交
17 18 19 20
#ifdef PADDLE_MOBILE_PROFILE
#include <ctime>
#include <map>
#endif
L
liuruilong 已提交
21 22

#include "common/enforce.h"
L
liuruilong 已提交
23
#include "common/log.h"
L
liuruilong 已提交
24
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
25 26
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
27
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
28 29 30 31
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
W
wangliu 已提交
32 33 34 35

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
36 37
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
38 39
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
40 41 42 43 44 45
  fseek(file, 0, SEEK_END);
  long size = ftell(file);
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
46 47
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
48 49
  fclose(file);
  return data;
W
wangliu 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
}

static size_t ReadBuffer(const char *file_name, uint8_t **out) {
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
  PADDLE_MOBILE_ENFORCE(fp != NULL, " %s open failed !", file_name);

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

  *out = reinterpret_cast<uint8_t *>(malloc(size));

  size_t cur_len = 0;
  size_t nread;
  while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

template <typename Dtype, Precision P>
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
L
liuruilong 已提交
77
    const std::string &dirname, bool optimize) {
L
liuruilong 已提交
78 79 80 81 82 83
  auto program = this->LoadProgram(dirname + "/__model__", optimize);
  program.model_path = dirname;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
84 85 86
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
    const std::string &model_path, const std::string &para_path,
    bool optimize) {
L
liuruilong 已提交
87 88 89 90 91 92 93
  auto program = this->LoadProgram(model_path, optimize);
  program.para_path = para_path;
  program.is_commbine = true;
  return program;
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
94 95
const framework::Program<Dtype, P> Loader<Dtype, P>::LoadProgram(
    const std::string &model_path, bool optimize) {
L
liuruilong 已提交
96
  std::string model_filename = model_path;
W
wangliu 已提交
97 98 99 100 101 102 103
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

  c_program = paddle_mobile__framework__proto__program_desc__unpack(
L
liuruilong 已提交
104
      NULL, read_size, buf);
W
wangliu 已提交
105
  //
W
wangliu 已提交
106
  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");
W
wangliu 已提交
107
  //
W
wangliu 已提交
108
  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
W
wangliu 已提交
109
  //
110
  auto originProgramDesc = std::make_shared<framework::ProgramDesc>(c_program);
W
wangliu 已提交
111 112 113 114

  framework::Program<Dtype, P> program;
  program.originProgram = originProgramDesc;

115
  auto scope = std::make_shared<framework::Scope>();
W
wangliu 已提交
116 117 118
  program.scope = scope;

  for (const auto &block : originProgramDesc->Blocks()) {
119
    for (auto var_desc : block->Vars()) {
W
wangliu 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
      auto var = scope->Var(var_desc->Name());

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
        if (var_desc->Persistable() &&
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
          auto dim = var_desc->Tensor_desc().Dims();
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        } else {
          auto dim = var_desc->Tensor_desc().Dims();
          PADDLE_MOBILE_ENFORCE(dim.size() > 0, "dim size is 0");
          dim[0] = 1;
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
        }
      } else {
        // TODO(codeWorm): some.
      }
    }
  }

L
liuruilong 已提交
142 143
  //  originProgramDesc->Description("program: ");

L
liuruilong 已提交
144 145
  if (optimize) {
    framework::ProgramOptimize program_optimize;
L
liuruilong 已提交
146
    program.optimizeProgram =
L
liuruilong 已提交
147
        program_optimize.FushionOptimize(originProgramDesc);
L
liuruilong 已提交
148
  }
L
liuruilong 已提交
149 150 151 152 153 154
  if (optimize) {
    program.optimizeProgram->Description("optimize: ");
  } else {
    originProgramDesc->Description("program: ");
  }

W
wangliu 已提交
155 156 157 158 159 160 161 162 163
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
  return program;
}

template class Loader<CPU, Precision::FP32>;

#pragma mark - executor

template <typename Dtype, Precision P>
L
liuruilong 已提交
164 165
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
166
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
181
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
182 183 184 185 186 187 188 189
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();

      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
L
liuruilong 已提交
190 191 192 193 194
  if (program_.is_commbine) {
    InitCombineMemory();
  } else {
    InitMemory();
  }
W
wangliu 已提交
195 196 197 198
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
L
liuruilong 已提交
199
                                    framework::LoDTensor *tensor, char *&data) {
W
wangliu 已提交
200
  // 1. version
L
liuruilong 已提交
201 202
  uint32_t version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
203 204

  // 2 Lod information
L
liuruilong 已提交
205 206 207
  uint64_t lod_level = *(uint64_t *)data;
  data += sizeof(uint64_t);

W
wangliu 已提交
208 209 210
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
L
liuruilong 已提交
211 212 213
    uint64_t size = *(uint64_t *)data;
    data += sizeof(uint64_t);
    DLOG << "lod size: " << i << size;
W
wangliu 已提交
214
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
215 216 217 218 219 220 221

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *(size_t *)data;
      DLOG << "tmp[k]: " << k << *(size_t *)data;
      data += sizeof(size_t);
    }

W
wangliu 已提交
222 223 224 225 226 227 228
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
L
liuruilong 已提交
229 230
  uint32_t tensor_version = *(uint32_t *)data;
  data += sizeof(uint32_t);
W
wangliu 已提交
231 232

  // 4. tensor desc
L
liuruilong 已提交
233 234 235
  int32_t size = *(int32_t *)data;
  data += sizeof(int32_t);

W
wangliu 已提交
236
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
237 238 239 240
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = data[m];
  }
  data += (sizeof(char) * size);
W
wangliu 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
276 277 278
  for (int n = 0; n < memory_size * type_size; ++n) {
    static_cast<char *>(memory)[n] = data[n];
  }
L
liuruilong 已提交
279
  data += (sizeof(char) * memory_size * type_size);
W
wangliu 已提交
280 281 282 283 284 285 286 287 288 289 290 291
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
292

L
liuruilong 已提交
293 294
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
295 296
        char *data = origin_data;
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
297
        delete origin_data;
W
wangliu 已提交
298 299 300 301 302 303 304 305 306 307 308
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
309
template <typename Dtype, Precision P>
L
liuruilong 已提交
310
void Executor<Dtype, P>::InitCombineMemory() {
L
liuruilong 已提交
311
  char *origin_data = Get_binary_data(program_.para_path);
L
liuruilong 已提交
312
  char *data = origin_data;
L
liuruilong 已提交
313 314 315 316 317 318 319 320
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
321
        LoadMemory(*var_desc, tensor, data);
L
liuruilong 已提交
322 323 324 325 326 327 328 329 330 331 332
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
  delete origin_data;
}

W
wangliu 已提交
333
template <typename Dtype, Precision P>
W
wangliu 已提交
334 335
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
336 337 338 339 340 341
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
342
      to_predict_program_->Block(0);
D
dolphin8 已提交
343 344 345
#ifdef PADDLE_MOBILE_PROFILE
  std::map<std::string, clock_t> _profile;
#endif
W
wangliu 已提交
346 347
  for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
    auto op = ops_of_block_[*to_predict_block.get()][j];
D
dolphin8 已提交
348 349 350
#ifdef PADDLE_MOBILE_PROFILE
  _profile[op->Type()] = clock();
#endif
W
wangliu 已提交
351
    op->Run();
D
dolphin8 已提交
352 353 354
#ifdef PADDLE_MOBILE_PROFILE
  _profile[op->Type()] = clock() - _profile[op->Type()];
#endif
W
wangliu 已提交
355
  }
D
dolphin8 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
#ifdef PADDLE_MOBILE_PROFILE
  {
    DLOG << "========================[ profile ]==========================";
    clock_t _ptotal = 0;
    for (auto const & p : _profile) {
      _ptotal += p.second;
    }
    for (auto const & p : _profile) {
      DLOG << p.first << std::string(16-p.first.size(), ' ')
           << "\t" << (float)p.second
           << "\t\t" << (float)p.second / (float)_ptotal * 100.0;
    }
    DLOG << "========================[         ]==========================";
  }
#endif
W
wangliu 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384
  auto ops = ops_of_block_[*to_predict_program_->Block(0)];
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
  return std::shared_ptr<framework::Tensor>(output_tensor);
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
385 386 387
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
388
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
389 390
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
391 392 393 394 395 396 397 398
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
399 400 401 402 403
}

template class Executor<CPU, Precision::FP32>;

}  // namespace paddle_mobile