executor.cpp 23.5 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "io/executor.h"
W
wangliu 已提交
16
#include <operators/math/gemm.h>
D
dolphin8 已提交
17
#include <algorithm>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
D
dolphin8 已提交
29
#ifdef PADDLE_EXECUTOR_MULTITHREAD
D
dolphin8 已提交
30 31 32 33
#include <queue>
#include <utility>
#include "common/threadpool.h"
#endif
W
wangliu 已提交
34 35 36 37

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
38 39
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
40 41
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
42
  fseek(file, 0, SEEK_END);
43
  int64_t size = ftell(file);
L
liuruilong 已提交
44 45 46 47
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
48 49
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
50 51
  fclose(file);
  return data;
W
wangliu 已提交
52 53 54 55
}

#pragma mark - executor
template <typename Dtype, Precision P>
L
liuruilong 已提交
56
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
xiebaiyuan's avatar
xiebaiyuan 已提交
57 58 59 60 61
                             bool use_optimize, bool loddable)
    : program_(p),
      batch_size_(batch_size),
      use_optimize_(use_optimize),
      loddable_(loddable) {
W
wangliu 已提交
62 63 64 65 66 67 68
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
69 70
  PADDLE_MOBILE_ENFORCE(to_predict_program_ != nullptr,
                        "to_predict_program_ == NULL!");
W
wangliu 已提交
71 72
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
D
dolphin8 已提交
73 74 75
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  depManager.resize(blocks.size());
#endif
xiebaiyuan's avatar
xiebaiyuan 已提交
76
  DLOG << "executer in loaddable mode: " << loddable_;
W
wangliu 已提交
77 78 79 80 81
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
Z
zhangyang 已提交
82
      DLOG << "create op: " << j << "  " << op->Type();
W
wangliu 已提交
83 84 85
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
86 87 88 89 90
      // use pre_infershape to pre resize , but if u use an lod mode tensor u
      // need to resize in runtime
      if (!loddable_) {
        op_base->InferShape();
      }
W
wangliu 已提交
91
      ops_of_block_[*block_desc.get()].push_back(op_base);
D
dolphin8 已提交
92 93 94
#ifdef PADDLE_EXECUTOR_MULTITHREAD
      depManager[i].analysisDep(ops_of_block_[*block_desc.get()]);
#endif
W
wangliu 已提交
95
    }
96
    DLOG << "Total " << ops.size() << " ops have been created ";
W
wangliu 已提交
97
  }
W
wangliu 已提交
98
  if (program_.combined) {
L
liuruilong 已提交
99 100 101 102
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
103
  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
104
      to_predict_program_->Block(0);
L
liuruilong 已提交
105
  auto &ops = ops_of_block_[*to_predict_block.get()];
Z
zhangyang 已提交
106
  int i = 0;
L
liuruilong 已提交
107
  for (const auto &op : ops) {
Z
zhangyang 已提交
108
    DLOG << "Init op: " << i++ << "  " << op->Type();
L
liuruilong 已提交
109 110
    op->Init();
  }
W
wangliu 已提交
111 112 113 114
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
115
                                    framework::LoDTensor *tensor, char **data) {
W
wangliu 已提交
116
  // 1. version
117 118 119
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);
W
wangliu 已提交
120 121

  // 2 Lod information
L
liuruilong 已提交
122
  uint64_t *lod_level_ptr = new uint64_t();
123
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
L
liuruilong 已提交
124 125
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
126
  (*data) += sizeof(uint64_t);
L
liuruilong 已提交
127

W
wangliu 已提交
128 129 130
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
131 132
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
W
wangliu 已提交
133
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
134 135

    for (int k = 0; k < tmp.size(); ++k) {
136 137
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
L
liuruilong 已提交
138 139
    }

W
wangliu 已提交
140 141 142 143 144 145 146
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
147 148
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);
W
wangliu 已提交
149 150

  // 4. tensor desc
151 152
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);
L
liuruilong 已提交
153

W
wangliu 已提交
154
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
155
  for (int m = 0; m < size; ++m) {
156
    buf.get()[m] = (*data)[m];
L
liuruilong 已提交
157
  }
158
  (*data) += (sizeof(char) * size);
W
wangliu 已提交
159 160 161 162 163 164 165 166 167

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

168
  void *memory = nullptr;
W
wangliu 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
xiebaiyuan's avatar
xiebaiyuan 已提交
182
      memory = tensor->mutable_data<int32_t>();
W
wangliu 已提交
183 184 185 186 187 188 189 190 191 192 193
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }
W
wangliu 已提交
194 195 196 197 198 199 200 201
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
H
hanbuhe 已提交
202
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
W
wangliu 已提交
203 204 205 206 207
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
208 209 210 211 212 213 214 215
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
W
wangliu 已提交
216 217
    }
    (*data) += (sizeof(char) * memory_size * type_size);
L
liuruilong 已提交
218
  }
W
wangliu 已提交
219 220 221 222 223 224 225 226 227 228 229 230
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
231

L
liuruilong 已提交
232 233
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
234
        char *data = origin_data;
235
        LoadMemory(*var_desc, tensor, &data);
236 237 238 239 240 241 242

        //        DLOG << "-----      " << var_desc->Name();
        //        DLOG << "-----      " << tensor->dims();
        //        float *pDouble = tensor->template data<float>();
        //        for (int i = 0; i < tensor->numel() && i < 30; ++i) {
        //          std::cout << pDouble[i] << std::endl;
        //        }
L
liuruilong 已提交
243
        delete origin_data;
W
wangliu 已提交
244 245
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
xiebaiyuan's avatar
xiebaiyuan 已提交
246 247 248 249 250 251 252 253 254
          bool is_mute_match;
          framework::LoDTensor *tensor = nullptr;

          is_mute_match = varInputMemory(var_desc, var, tensor);

          PADDLE_MOBILE_ENFORCE(
              is_mute_match,
              "got unhandled var_desc->Tensor_desc().DataType(): %d",
              var_desc->Tensor_desc().DataType());
W
wangliu 已提交
255 256 257 258 259 260
        }
      }
    }
  }
}

L
liuruilong 已提交
261
template <typename Dtype, Precision P>
L
liuruilong 已提交
262
void Executor<Dtype, P>::InitCombineMemory() {
263 264 265 266 267 268 269 270 271
  char *origin_data;
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
    origin_data = (char *)program_.combined_params_buf;
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
    origin_data = Get_binary_data(program_.para_path);
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
L
liuruilong 已提交
272
  char *data = origin_data;
L
liuruilong 已提交
273 274 275 276 277 278 279 280
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
281
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
282 283
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
xiebaiyuan's avatar
xiebaiyuan 已提交
284 285 286 287 288 289 290 291 292
          bool is_mute_match = false;
          framework::LoDTensor *tensor;

          is_mute_match = varInputMemory(var_desc, var, tensor);

          PADDLE_MOBILE_ENFORCE(
              is_mute_match,
              "got unhandled var_desc->Tensor_desc().DataType(): %d",
              var_desc->Tensor_desc().DataType());
L
liuruilong 已提交
293 294 295 296 297
        }
      }
    }
  }
  delete origin_data;
L
liuruilong 已提交
298
  LOG(kLOG_INFO) << " end init combine memory ";
L
liuruilong 已提交
299
}
xiebaiyuan's avatar
xiebaiyuan 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
template <typename Dtype, Precision P>
bool Executor<Dtype, P>::varInputMemory(
    const std::shared_ptr<framework::VarDesc> &var_desc, Variable *var,
    framework::LoDTensor *tensor) const {
  bool is_mute_match = false;
  switch (var_desc->Tensor_desc().DataType()) {
    case framework::VARTYPE_TYPE_FP16: {
      break;
    }

    case framework::VARTYPE_TYPE_FP32: {
      tensor = var->template GetMutable<framework::LoDTensor>();
      tensor->template mutable_data<Ptype>();
      is_mute_match = true;
      break;
    }

    case framework::VARTYPE_TYPE_FP64: {
      break;
    }

    case framework::VARTYPE_TYPE_INT32: {
xiebaiyuan's avatar
xiebaiyuan 已提交
322 323 324
      tensor = var->template GetMutable<framework::LoDTensor>();
      tensor->template mutable_data<int32_t>();
      is_mute_match = true;
xiebaiyuan's avatar
xiebaiyuan 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
      break;
    }

    case framework::VARTYPE_TYPE_INT64: {
      tensor = var->template GetMutable<framework::LoDTensor>();
      tensor->template mutable_data<int64_t>();
      is_mute_match = true;
      break;
    }
    case framework::VARTYPE_TYPE_BOOL: {
      break;
    }

    default: { break; }
  }

  return is_mute_match;
}
L
liuruilong 已提交
343

W
wangliu 已提交
344
template <typename Dtype, Precision P>
W
wangliu 已提交
345 346
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
347 348 349 350 351 352
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
353
      to_predict_program_->Block(0);
D
dolphin8 已提交
354
  auto &ops = ops_of_block_[*to_predict_block.get()];
xiebaiyuan's avatar
xiebaiyuan 已提交
355

D
dolphin8 已提交
356
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
357
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
358
#endif
D
dolphin8 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  std::mutex m;
  std::condition_variable cv;
  std::queue<int> next;
  next.push(0);
  int rsize = ops.size();
  std::vector<int> status(rsize, 0);
  auto &threadPool = ThreadPool::getThreadPool();
  auto &dep = depManager[0];
  auto finishF = [&ops, &m, &cv, &next, &status, &rsize, &dep](int opi) {
    std::lock_guard<std::mutex> lk(m);
    rsize--;
    status[opi] = 2;
    for (int i : dep.getNext(opi)) {
      bool ok = true;
      for (int j : dep.getDeps(i)) {
        if (status[j] != 2) {
          ok = false;
          break;
        }
      }
      if (ok && (status[i] == 0)) {
        next.push(i);
      }
    }
    cv.notify_one();
  };
  for (;;) {
    std::unique_lock<std::mutex> lk(m);
    cv.wait(lk, [&next, &rsize] { return rsize == 0 || !next.empty(); });
    if (rsize == 0) {
      break;
    }
    while (next.size() > 0) {
      int opi = next.front();
      next.pop();
      status[opi] = 1;
      threadPool.enqueue([opi, &ops, &finishF, &profile] {
        auto &op = ops[opi];
D
dolphin8 已提交
398
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
399 400 401 402
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
        profile[opi].tid = ThreadPool::getThreadPoolThreadId();
D
dolphin8 已提交
403
#endif
D
dolphin8 已提交
404
        ops[opi]->Run();
D
dolphin8 已提交
405
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
406 407
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
D
dolphin8 已提交
408
#endif
D
dolphin8 已提交
409 410 411
        finishF(opi);
      });
    }
W
wangliu 已提交
412
  }
D
dolphin8 已提交
413 414
#else
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
415
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
416 417 418 419
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
L
liuruilong 已提交
420
    // to Run
D
dolphin8 已提交
421 422 423 424 425
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
426 427
  }
#endif
W
wangliu 已提交
428 429 430 431 432 433 434
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
435 436
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
437 438
  // TODO(haipeng): expose profile info as an interface, user can get them to
  // analysis
D
dolphin8 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452
  //      the performance of their deepnet.
  FILE *df = fopen("net.dot", "w");
  fprintf(df, "digraph {\n");
  for (int i = 0; i < ops.size(); i++) {
    for (int j : dep.getNext(i)) {
      fprintf(df, "op_%d -> op_%d\n", i, j);
    }
  }
  for (int i = 0; i < ops.size(); i++) {
    fprintf(df, "op_%d[label=\"%s (%d)\"]\n", i, ops[i]->Type().c_str(), i);
  }
  fprintf(df, "}\n");
  fclose(df);
#endif
453
  //  FILE *pf = fopen("profile.out", "w");
D
dolphin8 已提交
454 455 456 457 458
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
L
liuruilong 已提交
459 460 461
    //    fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i,
    //    ops[i]->Type().c_str(),
    //            pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost);
D
dolphin8 已提交
462
  }
463
  //  fclose(pf);
D
dolphin8 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
477 478 479
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
480 481 482
  }
  printf("====================[---------]======================\n");
#endif
L
liuruilong 已提交
483
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
484
}
xiebaiyuan's avatar
xiebaiyuan 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

template <typename Dtype, Precision P>
std::shared_ptr<framework::LoDTensor> Executor<Dtype, P>::PredictLod(
    const framework::LoDTensor &t) {
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::LoDTensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  feed_tensor->set_lod(t.lod());

  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);

  auto &ops = ops_of_block_[*to_predict_block.get()];

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  std::mutex m;
  std::condition_variable cv;
  std::queue<int> next;
  next.push(0);
  int rsize = ops.size();
  std::vector<int> status(rsize, 0);
  auto &threadPool = ThreadPool::getThreadPool();
  auto &dep = depManager[0];
  auto finishF = [&ops, &m, &cv, &next, &status, &rsize, &dep](int opi) {
    std::lock_guard<std::mutex> lk(m);
    rsize--;
    status[opi] = 2;
    for (int i : dep.getNext(opi)) {
      bool ok = true;
      for (int j : dep.getDeps(i)) {
        if (status[j] != 2) {
          ok = false;
          break;
        }
      }
      if (ok && (status[i] == 0)) {
        next.push(i);
      }
    }
    cv.notify_one();
  };
  for (;;) {
    std::unique_lock<std::mutex> lk(m);
    cv.wait(lk, [&next, &rsize] { return rsize == 0 || !next.empty(); });
    if (rsize == 0) {
      break;
    }
    while (next.size() > 0) {
      int opi = next.front();
      next.pop();
      status[opi] = 1;
      threadPool.enqueue([opi, &ops, &finishF, &profile] {
        auto &op = ops[opi];
#ifdef PADDLE_MOBILE_PROFILE
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
        profile[opi].tid = ThreadPool::getThreadPoolThreadId();
#endif
        ops[opi]->Run();
#ifdef PADDLE_MOBILE_PROFILE
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
        finishF(opi);
      });
    }
  }
#else
  for (int i = 0; i < ops.size(); i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
    if (loddable_) {
      ops[i]->InferShape();
    }
    // to Run
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
#endif
  auto last_op = ops.rbegin();

  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  // TODO(haipeng): expose profile info as an interface, user can get them to
  // analysis
  //      the performance of their deepnet.
  FILE *df = fopen("net.dot", "w");
  fprintf(df, "digraph {\n");
  for (int i = 0; i < ops.size(); i++) {
    for (int j : dep.getNext(i)) {
      fprintf(df, "op_%d -> op_%d\n", i, j);
    }
  }
  for (int i = 0; i < ops.size(); i++) {
    fprintf(df, "op_%d[label=\"%s (%d)\"]\n", i, ops[i]->Type().c_str(), i);
  }
  fprintf(df, "}\n");
  fclose(df);
#endif
  //  FILE *pf = fopen("profile.out", "w");
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
    //    fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i,
    //    ops[i]->Type().c_str(),
    //            pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost);
  }
  //  fclose(pf);
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
  printf("====================[---------]======================\n");
#endif
  return std::make_shared<framework::LoDTensor>(
      framework::LoDTensor(*output_tensor));
}

W
wangliu 已提交
636 637 638 639
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
640 641 642
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
643
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
644 645
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
646 647 648 649 650 651 652 653
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
654 655
}

656
#ifdef PADDLE_MOBILE_FPGA
657

658
template <typename Dtype, Precision P>
659 660 661
void Executor<Dtype, P>::InjectVariable(const framework::Tensor &t,
                                        string var_name) {
  framework::Variable *g_feed_value = program_.scope->Var(var_name);
662 663 664 665 666 667
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
};

668 669 670 671 672
template <typename Dtype, Precision P>
void Executor<Dtype, P>::FeedData(const framework::Tensor &t) {
  InjectVariable(t, "feed");
};

673
template <typename Dtype, Precision P>
674
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::FetchResult(int id) {
675 676 677
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
678 679 680 681 682

  PADDLE_MOBILE_ENFORCE(id < ops.size(), "Index out of range");
  auto last_op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = last_op->Outputs();
  std::vector<std::string> out_keys = last_op->GetOutKeys();
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "the last op contains no output");
  auto *output_tensor = framework::GetVarValue<framework::LoDTensor>(
      out_keys[0], output_map, *(program_.scope));
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
};

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From_To(int start, int end) {
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
  end = end < 0 ? (int)ops.size() : end;
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
707
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
};

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From(int start) {
  Predict_From_To(start);
};

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_To(int end) {
  Predict_From_To(0, end);
};
#endif

W
wangliu 已提交
728
template class Executor<CPU, Precision::FP32>;
H
hanbuhe 已提交
729
template class Executor<GPU_MALI, Precision::FP32>;
L
liuruilong 已提交
730
template class Executor<FPGA, Precision::FP32>;
W
wangliu 已提交
731 732

}  // namespace paddle_mobile