transpose_op_test.cc 4.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/transpose_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_registry.h"
Z
zhupengyang 已提交
18 19
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/test_helper.h"
Y
Yan Chunwei 已提交
20 21 22

namespace paddle {
namespace lite {
Z
zhupengyang 已提交
23
namespace kernels {
Y
Yan Chunwei 已提交
24
namespace npu {
Z
zhupengyang 已提交
25
namespace bridges {
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33 34 35 36

int data_index(std::vector<int> pos, DDimLite dims) {
  int d1 = dims[1];
  int d2 = dims[2];
  int d3 = dims[3];
  return pos[3] + pos[2] * d3 + pos[1] * d3 * d2 + pos[0] * d3 * d2 * d1;
}

std::vector<int> pos_trans(std::vector<int> in_pos, std::vector<int> axis) {
  std::vector<int> out_pos(in_pos.size());
  for (int i = 0; i < axis.size(); i++) {
Y
Yan Chunwei 已提交
37
    out_pos[axis[i]] = in_pos[i];
Y
Yan Chunwei 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  }
  return out_pos;
}

void transpose_ref(const std::shared_ptr<operators::TransposeOp> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto input =
      scope->FindVar(op_info->Input("X").front())->GetMutable<Tensor>();
  auto output =
      scope->FindVar(op_info->Output("Out").front())->GetMutable<Tensor>();
  auto x_dims = input->dims();
  auto y_dims = output->dims();
  auto axis = op_info->GetAttr<std::vector<int>>("axis");

  auto* input_data = input->data<float>();
  auto* output_data = output->mutable_data<float>();

  int input_n = x_dims[0];
  int input_c = x_dims[1];
  int input_h = x_dims[2];
  int input_w = x_dims[3];
  int output_n = y_dims[0];
  int output_c = y_dims[1];
  int output_h = y_dims[2];
  int output_w = y_dims[3];

  for (int n = 0; n < input_n; ++n) {
    for (int c = 0; c < input_c; ++c) {
      for (int h = 0; h < input_h; ++h) {
        for (int w = 0; w < input_w; ++w) {
          std::vector<int> in_pos{n, c, h, w};
          std::vector<int> out_pos = pos_trans(in_pos, axis);
          int in_index = data_index(in_pos, x_dims);
          int out_index = data_index(out_pos, y_dims);
          output_data[out_index] = input_data[in_index];
        }
      }
    }
  }
}

void test_transpose(int bs, int ic, int ih, int iw, std::vector<int> axis) {
  // prepare input&output variables
  Scope scope;
  std::string x_var_name = "x";
  std::string out_var_name = "out";
  std::string out_ref_var_name = "out_ref";
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto* out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
  x->Resize({bs, ic, ih, iw});

  // initialize input&output data
Y
Yan Chunwei 已提交
92
  FillTensor<float>(x);
Y
Yan Chunwei 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  // initialize op desc
  cpp::OpDesc opdesc;
  opdesc.SetType("transpose");
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetAttr("axis", axis);

  // create and convert op to NPU model, then run it on NPU
  auto op = CreateOp<operators::TransposeOp>(opdesc, &scope);
  LauchOp(op, {x_var_name}, {out_var_name});
  out_ref->CopyDataFrom(*out);

  // execute reference implementation and save to output tensor
  transpose_ref(op);

  // compare results
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();
  for (int i = 0; i < out->dims().production(); i++) {
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2);
  }
}

TEST(NPUBridges, transpose) {
#if 0
  for (auto bs : {1, 4, 7}) {
    for (auto ic : {1, 4, 7}) {
      for (auto ih : {1, 4, 7}) {
        for (auto iw : {1, 4, 7}) {
Y
Yan Chunwei 已提交
123 124 125 126 127 128
          for (auto axis : {std::vector<int>{0, 1, 2, 3},
                            std::vector<int>{0, 1, 3, 2},
                            std::vector<int>{0, 3, 1, 2},
                            std::vector<int>{1, 2, 3, 0},
                            std::vector<int>{3, 2, 1, 0},
                            std::vector<int>{2, 3, 1, 0}}) {
Y
Yan Chunwei 已提交
129 130 131 132 133 134 135
            test_transpose(bs, ic, ih, iw, axis);
          }
        }
      }
    }
  }
#endif
Y
Yan Chunwei 已提交
136 137
  test_transpose(2, 3, 4, 5, std::vector<int>{0, 1, 3, 2});
  // test_transpose(2, 3, 4, 5, std::vector<int>{0, 1, 2, 3});
Y
Yan Chunwei 已提交
138 139 140 141 142
  // test_transpose(2, 2, 2, 2, std::vector<int>{0,1,3,2});
  // test_transpose(1, 1, 2, 2, std::vector<int>{0,1,3,2});
  // test_transpose(1, 1, 1, 2, std::vector<int>{0,1,2,3});
}

Z
zhupengyang 已提交
143
}  // namespace bridges
Y
Yan Chunwei 已提交
144
}  // namespace npu
Z
zhupengyang 已提交
145
}  // namespace kernels
Y
Yan Chunwei 已提交
146 147 148 149 150 151 152 153
}  // namespace lite
}  // namespace paddle

USE_LITE_OP(transpose);
USE_NPU_BRIDGE(transpose);

USE_LITE_OP(transpose2);
USE_NPU_BRIDGE(transpose2);