conv_kernel.cpp 5.6 KB
Newer Older
Z
zhaojiaying01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

L
liuruilong 已提交
15 16
#ifdef CONV_OP

朔-望's avatar
朔-望 已提交
17
#include "operators/kernel/conv_kernel.h"
18
#include "operators/kernel/central-arm-func/conv_arm_func.h"
朔-望's avatar
朔-望 已提交
19 20

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
21 22
namespace operators {

L
liuruilong 已提交
23
template <>
N
nhzlx 已提交
24
bool ConvKernel<CPU, float>::Init(ConvParam<CPU> *param) {
25 26
  bool conv3x3 = param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
                 param->Filter()->dims()[2] == 3;
27 28
  bool conv5x5 = param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
                 param->Filter()->dims()[2] == 5;
29 30
  bool depth3x3 = conv3x3 && param->Groups() == param->Input()->dims()[1] &&
                  param->Input()->dims()[1] == param->Output()->dims()[1];
31 32
  bool depth5x5 = conv5x5 && param->Groups() == param->Input()->dims()[1] &&
                  param->Input()->dims()[1] == param->Output()->dims()[1];
H
hjchen2 已提交
33
  if (param->Filter()->type() == typeid(int8_t)) {
34
#ifndef __aarch64__
35
    if (depth3x3 && param->Strides()[0] < 3 &&
36
        param->Strides()[0] == param->Strides()[1]) {
H
hjchen2 已提交
37
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3_INT8;
38 39 40
    } else if (depth5x5 && param->Strides()[0] < 2 &&
               param->Strides()[0] == param->Strides()[1]) {
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE5x5_INT8;
H
hjchen2 已提交
41
    } else {
42
#endif  // __aarch64__
H
hjchen2 已提交
43
      param->ExecMode() = ConvParam<CPU>::EXEC_GEMM_INT8;
44
#ifndef __aarch64__
H
hjchen2 已提交
45
    }
46
#endif  // __aarch64__
H
hjchen2 已提交
47
  } else {
48 49 50
    if (depth3x3 && param->Strides()[0] == param->Strides()[1] &&
        param->Strides()[0] == 1 && param->Paddings()[0] == 1 &&
        param->Paddings()[0] == param->Paddings()[1]) {
H
hjchen2 已提交
51
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3S1P1_FLOAT;
52 53 54 55 56 57 58 59
    } else if (depth3x3 && param->Strides()[0] == param->Strides()[1] &&
               param->Strides()[0] == 2 && param->Paddings()[0] == 0 &&
               param->Paddings()[0] == param->Paddings()[1]) {
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3S2P0_FLOAT;
    } else if (depth3x3 && param->Strides()[0] == param->Strides()[1] &&
               param->Strides()[0] == 2 && param->Paddings()[0] == 1 &&
               param->Paddings()[0] == param->Paddings()[1]) {
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3S2P1_FLOAT;
H
hjchen2 已提交
60 61
    } else if (depth3x3) {
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3_FLOAT;
62
#ifndef __aarch64__
63 64
    } else if (depth5x5 && param->Strides()[0] == param->Strides()[1] &&
               param->Strides()[0] == 1) {
65
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE5x5_FLOAT;
66
    } else if (conv3x3 && param->Strides()[0] == param->Strides()[1] &&
H
hjchen2 已提交
67
               param->Dilations()[0] == param->Dilations()[1] &&
68 69
               param->Strides()[0] == 1 && param->Dilations()[0] == 1 &&
               param->Output()->dims()[1] >= 16 &&
70 71
               param->Input()->dims()[1] >= 16 &&
               param->Input()->dims()[2] <= 140 /* refered from ncnn */) {
H
hjchen2 已提交
72 73
      param->ExecMode() = ConvParam<CPU>::EXEC_WINOGRAD3X3_FLOAT;
      // transform weight
74
      param->transformed_filter_ = new framework::LoDTensor;
H
hjchen2 已提交
75 76
      operators::math::winograd_transform_weight<8, 3>(
          *param->Filter(), param->transformed_filter_);
H
hjchen2 已提交
77
#endif
H
hjchen2 已提交
78 79 80 81
    } else {
      param->ExecMode() = ConvParam<CPU>::EXEC_GEMM_FLOAT;
    }
  }
L
liuruilong 已提交
82 83 84
  return true;
}

朔-望's avatar
朔-望 已提交
85
template <>
L
liuruilong 已提交
86
void ConvKernel<CPU, float>::Compute(const ConvParam<CPU> &param) {
H
hjchen2 已提交
87 88 89
  switch (param.ExecMode()) {
    case ConvParam<CPU>::EXEC_GEMM_INT8:
      GemmConv<int8_t, int32_t>(param);
H
hjchen2 已提交
90
      break;
91
#ifndef __aarch64__
H
hjchen2 已提交
92 93
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3_INT8:
      DepthwiseConv3x3<int8_t, int32_t>(param);
H
hjchen2 已提交
94
      break;
95 96 97 98
    case ConvParam<CPU>::EXEC_DEPTHWISE5x5_INT8:
      DepthwiseConv5x5<int8_t, int32_t>(param);
      break;
#endif  // __aarch64__
H
hjchen2 已提交
99 100
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3S1P1_FLOAT:
      math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
101
                                 nullptr, false, false);
H
hjchen2 已提交
102
      break;
103 104
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3S2P1_FLOAT:
      math::DepthwiseConv3x3s2p1v2(param.Input(), param.Filter(),
105
                                   param.Output(), nullptr, false, false);
106 107 108
      break;
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3S2P0_FLOAT:
      math::DepthwiseConv3x3s2p0(param.Input(), param.Filter(), param.Output(),
109
                                 nullptr, false, false);
H
hjchen2 已提交
110
      break;
H
hjchen2 已提交
111 112 113 114
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3_FLOAT:
      math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
                             param.Filter(), nullptr, param.Output(), false);
      break;
115 116 117
#ifndef __aarch64__
    case ConvParam<CPU>::EXEC_DEPTHWISE5x5_FLOAT:
      DepthwiseConv5x5<float, float>(param);
118
      break;
H
hjchen2 已提交
119 120 121
    case ConvParam<CPU>::EXEC_WINOGRAD3X3_FLOAT:
      WinogradConv3x3<8, 3>(param);
      break;
122
#endif  // __aarch64__
H
hjchen2 已提交
123 124 125 126 127 128 129
    case ConvParam<CPU>::EXEC_GEMM_FLOAT:
      GemmConv<float, float>(param);
      break;
    default:
      PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
                                    param.ExecMode());
  }
朔-望's avatar
朔-望 已提交
130 131
}

132
template class ConvKernel<CPU, float>;
朔-望's avatar
朔-望 已提交
133

朔-望's avatar
朔-望 已提交
134 135
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
136 137

#endif