transpose_kernel.cpp 5.3 KB
Newer Older
Y
yangfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef TRANSPOSE_OP

#include "operators/kernel/transpose_kernel.h"

namespace paddle_mobile {
Y
yangfei 已提交
19
namespace operators {
Y
yangfei 已提交
20

Y
yangfei 已提交
21 22
template <>
bool TransposeKernel<GPU_CL, float>::Init(TransposeParam<GPU_CL> *param) {
Y
yangfei 已提交
23 24
  if (param->Out()->dims().size() == 4) {
    this->cl_helper_.AddKernel("transpose_4d", "transpose_kernel.cl");
Y
yangfei 已提交
25 26
  } else if (param->Out()->dims().size() < 4) {
    this->cl_helper_.AddKernel("transpose", "transpose_kernel.cl");
Y
yangfei 已提交
27
  }
Y
yangfei 已提交
28 29
  return true;
}
Y
yangfei 已提交
30

Y
yangfei 已提交
31 32
template <>
void TransposeKernel<GPU_CL, float>::Compute(
Y
yangfei 已提交
33 34 35 36 37 38 39 40 41 42 43
    const TransposeParam<GPU_CL> &param) {
  if (param.Out()->dims().size() == 4) {
    auto kernel = this->cl_helper_.KernelAt(0);
    auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Out());
    int out_C = param.Out()->dims()[1];
    int out_H = param.Out()->dims()[2];
    int out_W = param.Out()->dims()[3];
    int in_W = param.InputX()->dims()[3];
    auto output_image = param.Out()->GetCLImage();
    auto input_image = param.InputX()->GetCLImage();
    DLOG << "out_C=" << out_C;
Y
yangfei 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    DLOG << "out_H=" << out_H;
    DLOG << "out_W=" << out_W;
    DLOG << "in_C=" << in_W;
    DLOG << "default_work_size=" << default_work_size;
    cl_int status;
    status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &output_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 2, sizeof(int), &out_C);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 3, sizeof(int), &out_H);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 4, sizeof(int), &out_W);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 5, sizeof(int), &in_W);
    CL_CHECK_ERRORS(status);
    status = clEnqueueNDRangeKernel(
        this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
        NULL, default_work_size.data(), NULL, 0, NULL, NULL);
    CL_CHECK_ERRORS(status);
  } else if (param.Out()->dims().size() == 3) {
    auto kernel = this->cl_helper_.KernelAt(0);
    auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Out());
    int out_C = param.Out()->dims()[0];
    int out_H = param.Out()->dims()[1];
    int out_W = param.Out()->dims()[2];
    int in_W = param.InputX()->dims()[2];
    auto output_image = param.Out()->GetCLImage();
    auto input_image = param.InputX()->GetCLImage();
    DLOG << "out_C=" << out_C;
    DLOG << "out_H=" << out_H;
    DLOG << "out_W=" << out_W;
    DLOG << "in_C=" << in_W;
    DLOG << "default_work_size=" << default_work_size;
    cl_int status;
    status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &output_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 2, sizeof(int), &out_C);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 3, sizeof(int), &out_H);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 4, sizeof(int), &out_W);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 5, sizeof(int), &in_W);
    CL_CHECK_ERRORS(status);
    status = clEnqueueNDRangeKernel(
        this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
        NULL, default_work_size.data(), NULL, 0, NULL, NULL);
    CL_CHECK_ERRORS(status);

  } else if (param.Out()->dims().size() == 2) {
    auto kernel = this->cl_helper_.KernelAt(0);
    auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Out());
    int out_C = 1;
    int out_H = param.Out()->dims()[0];
    int out_W = param.Out()->dims()[1];
    int in_W = param.InputX()->dims()[1];
    auto output_image = param.Out()->GetCLImage();
    auto input_image = param.InputX()->GetCLImage();
    DLOG << "out_C=" << out_C;
Y
yangfei 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    DLOG << "out_H=" << out_H;
    DLOG << "out_W=" << out_W;
    DLOG << "in_C=" << in_W;
    DLOG << "default_work_size=" << default_work_size;
    cl_int status;
    status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &input_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &output_image);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 2, sizeof(int), &out_C);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 3, sizeof(int), &out_H);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 4, sizeof(int), &out_W);
    CL_CHECK_ERRORS(status);
    status = clSetKernelArg(kernel, 5, sizeof(int), &in_W);
    CL_CHECK_ERRORS(status);
    status = clEnqueueNDRangeKernel(
        this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(),
        NULL, default_work_size.data(), NULL, 0, NULL, NULL);
    CL_CHECK_ERRORS(status);
  }
}
Y
yangfei 已提交
130

Y
yangfei 已提交
131
}  // namespace operators
Y
yangfei 已提交
132 133 134
}  // namespace paddle_mobile

#endif