batch_norm_compute.h 6.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

16
#include <Eigen/Core>
Y
Yan Chunwei 已提交
17 18 19 20
#include <random>
#include <string>
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
21 22 23
#include "lite/core/types.h"
#include "lite/fluid/eigen.h"
#include "lite/operators/batch_norm_op.h"
Y
Yan Chunwei 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

template <typename T>
class BatchNormCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  using param_t = operators::BatchNormParam;
  void Run() override {
47
    // auto &context = ctx_->As<X86Context>();
Y
Yan Chunwei 已提交
48
    auto &param = *param_.get_mutable<operators::BatchNormParam>();
49
    param.is_test = true;
Y
Yan Chunwei 已提交
50 51 52 53 54 55 56 57 58 59 60 61
    bool global_stats = param.is_test || param.use_global_stats;

    const auto *x = param.x;
    const auto &x_dims = x->dims();
    CHECK(x_dims.size() >= 2 && x_dims.size() <= 5);
    const int N = x_dims[0];
    const int C = param.data_layout == DATALAYOUT(kNCHW)
                      ? x_dims[1]
                      : x_dims[x_dims.size() - 1];
    const int sample_size = x->dims().production() / N / C;

    // alloc memory
H
huzhiqiang 已提交
62
    param.y->template mutable_data<T>();
Y
Yan Chunwei 已提交
63
    if (!param.is_test) {
H
huzhiqiang 已提交
64 65 66 67
      param.mean_out->template mutable_data<T>();
      param.variance_out->template mutable_data<T>();
      param.saved_mean->template mutable_data<T>();
      param.saved_variance->template mutable_data<T>();
Y
Yan Chunwei 已提交
68 69 70
    }
    if (!global_stats) {
      // saved_xx is use just in this batch of data
H
huzhiqiang 已提交
71 72
      EigenVectorArrayMap<T> saved_mean_e(
          param.saved_mean->template mutable_data<T>(), C);
Y
Yan Chunwei 已提交
73
      EigenVectorArrayMap<T> saved_variance_e(
H
huzhiqiang 已提交
74
          param.saved_variance->template mutable_data<T>(), C);
Y
Yan Chunwei 已提交
75 76 77
      saved_mean_e.setZero();
      saved_variance_e.setZero();

H
huzhiqiang 已提交
78 79
      EigenVectorArrayMap<T> running_mean_arr(
          param.mean_out->template mutable_data<T>(), C);
Y
Yan Chunwei 已提交
80
      EigenVectorArrayMap<T> running_var_arr(
H
huzhiqiang 已提交
81
          param.variance_out->template mutable_data<T>(), C);
Y
Yan Chunwei 已提交
82 83 84 85

      if ((N * sample_size) == 1) {
        LOG(WARNING) << "Only 1 element in normalization dimension, "
                     << "we skip the batch norm calculation, let y = x.";
86
        param.y->CopyDataFrom(*x);
Y
Yan Chunwei 已提交
87 88 89 90 91
        return;
      }

      switch (param.data_layout) {
        case DATALAYOUT(kNCHW): {
H
huzhiqiang 已提交
92 93
          ConstEigenArrayMap<T> x_arr(
              x->template data<T>(), sample_size, N * C);
Y
Yan Chunwei 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
          for (int nc = 0; nc < N * C; ++nc) {
            saved_mean_e(nc % C) += x_arr.col(nc).sum();
          }
          saved_mean_e /= N * sample_size;
          for (int nc = 0; nc < N * C; ++nc) {
            saved_variance_e(nc % C) +=
                (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm();
          }
          saved_variance_e /= N * sample_size;
          break;
        }
        default:
          LOG(FATAL) << "Unknown storage order: "
                     << DataLayoutToStr(param.data_layout);
          break;
      }
      running_mean_arr = running_mean_arr * param.momentum +
                         saved_mean_e * (1. - param.momentum);
      running_var_arr = running_var_arr * param.momentum +
                        saved_variance_e * (1. - param.momentum);
    }

    // use SavedMean and SavedVariance to do normalize
    Eigen::Array<T, Eigen::Dynamic, 1> inv_std(C);
    if (global_stats) {
H
huzhiqiang 已提交
119 120
      ConstEigenVectorArrayMap<T> var_arr(param.variance->template data<T>(),
                                          C);
Y
Yan Chunwei 已提交
121 122 123
      inv_std = (var_arr + param.epsilon).sqrt().inverse();
    } else {
      EigenVectorArrayMap<T> saved_inv_std(
H
huzhiqiang 已提交
124
          param.saved_variance->template mutable_data<T>(), C);
Y
Yan Chunwei 已提交
125 126 127 128 129 130
      // inverse SavedVariance first, gradient will use it too.
      saved_inv_std = (saved_inv_std + param.epsilon).inverse().sqrt();
      inv_std = saved_inv_std;
    }

    ConstEigenVectorArrayMap<T> mean_arr(
H
huzhiqiang 已提交
131 132 133
        global_stats ? param.mean->template data<T>()
                     : param.saved_mean->template data<T>(),
        C);
Y
Yan Chunwei 已提交
134 135 136 137 138

    //   ((x - est_mean) * (inv_var) * scale + bias
    //   formula transform ====>
    //   (x * inv_var * scale) + (bias - est_mean * inv_var * scale)

H
huzhiqiang 已提交
139 140
    ConstEigenVectorArrayMap<T> scale_arr(param.scale->template data<T>(), C);
    ConstEigenVectorArrayMap<T> bias_arr(param.bias->template data<T>(), C);
Y
Yan Chunwei 已提交
141 142 143 144 145 146
    Eigen::Array<T, Eigen::Dynamic, 1> new_scale = inv_std * scale_arr;
    Eigen::Array<T, Eigen::Dynamic, 1> new_bias =
        bias_arr - mean_arr * inv_std * scale_arr;

    switch (param.data_layout) {
      case DATALAYOUT(kNCHW): {
H
huzhiqiang 已提交
147 148 149
        EigenArrayMap<T> y_arr(
            param.y->template mutable_data<T>(), sample_size, N * C);
        ConstEigenArrayMap<T> x_arr(x->template data<T>(), sample_size, N * C);
Y
Yan Chunwei 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        for (int nc = 0; nc < N * C; ++nc) {
          y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C);
        }
        break;
      }
      default:
        LOG(FATAL) << "Unknown storage order: "
                   << DataLayoutToStr(param.data_layout);
        break;
    }
  }
  virtual ~BatchNormCompute() = default;
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle