math_function_impl.h 6.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <vector>
17
#include "lite/backends/x86/math/math_function.h"
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
#include "lite/fluid/data_type.h"
#include "lite/fluid/eigen.h"

namespace paddle {
namespace lite {
namespace x86 {
namespace math {

template <lite::TargetType Target, typename T>
void SetConstant<Target, T>::operator()(const lite::Context<Target>& context,
                                        lite::Tensor* tensor,
                                        T num) {
  auto t = lite::fluid::EigenVector<T>::Flatten(*tensor);

  // t.device(*Eigen::DefaultDevice()) = t.constant(static_cast<T>(num));
  // t.device(*context.eigen_device()) = t.constant(static_cast<T>(num));
  t.device(typename lite::fluid::EigenDevice<Target>::Type()) =
      t.constant(static_cast<T>(num));
}

template <lite::TargetType Target, typename T, int Rank>
void Transpose<Target, T, Rank>::operator()(
    const lite::Context<Target>& context,
    const lite::TensorLite& in,
    lite::TensorLite* out,
    const std::vector<int>& axis) {
  Eigen::array<int, Rank> permute;
  for (int i = 0; i < Rank; i++) {
    permute[i] = axis[i];
  }
  auto eigen_in = lite::fluid::EigenTensor<T, Rank>::From(in);
  auto eigen_out = lite::fluid::EigenTensor<T, Rank>::From(*out);
  // auto* dev = context.eigen_device();
  // eigen_out.device(*dev) = eigen_in.shuffle(permute);
  eigen_out.device(typename lite::fluid::EigenDevice<Target>::Type()) =
      eigen_in.shuffle(permute);
}

template <lite::TargetType Target, typename T>
void ColwiseSum<Target, T>::operator()(const lite::Context<Target>& context,
                                       const lite::TensorLite& input,
                                       lite::TensorLite* out) {
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(out->numel(), size);

  auto in = lite::fluid::EigenMatrix<T>::From(input);
  auto vec = lite::fluid::EigenVector<T>::Flatten(*out);

  // vec.device(*context.eigen_device()) = in.sum(Eigen::array<int, 1>({{0}}));
  vec.device(typename lite::fluid::EigenDevice<Target>::Type()) =
      in.sum(Eigen::array<int, 1>({{0}}));
}

// Specialize for CPU, since Eigen implement a general reduce. However,
// colwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
class ColwiseSum<lite::TargetType::kX86, T> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::TensorLite& input,
                  lite::TensorLite* out) {
    auto& in_dims = input.dims();
    auto height = in_dims[0];
    auto size = in_dims[1];
    PADDLE_ENFORCE_EQ(out->numel(), size);

H
huzhiqiang 已提交
86
    T* out_buf = out->template mutable_data<T>(out->target());
Y
Yan Chunwei 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    const T* in_buf = input.data<T>();

    for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
      for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
        if (i == 0) {
          out_buf[j] = in_buf[i * size + j];
        } else {
          out_buf[j] += in_buf[i * size + j];
        }
      }
    }
  }
};

template <lite::TargetType Target, typename T>
void RowwiseMean<Target, T>::operator()(const lite::Context<Target>& context,
                                        const lite::TensorLite& input,
                                        lite::TensorLite* out) {
  auto in_dims = input.dims();
  PADDLE_ENFORCE_EQ(in_dims.size(), 2U);
  PADDLE_ENFORCE_EQ(out->numel(), in_dims[0]);

  auto in = lite::fluid::EigenMatrix<T>::From(input);
  auto vec = lite::fluid::EigenVector<T>::Flatten(*out);

  // vec.device(*context.eigen_device()) = in.mean(Eigen::array<int, 1>({{1}}));
  vec.device(typename lite::fluid::EigenDevice<Target>::Type()) =
      in.mean(Eigen::array<int, 1>({{1}}));
}
// TODO(zcd): Following ColwiseSum format, need to confirm.
// Specialize for CPU, since Eigen implement a general reduce. However,
// rowwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
class RowwiseMean<lite::TargetType::kX86, T> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::TensorLite& input,
                  lite::TensorLite* out) {
    auto& in_dims = input.dims();
    PADDLE_ENFORCE_EQ(in_dims.size(), 2U);
    auto height = in_dims[0];
    auto size = in_dims[1];
    PADDLE_ENFORCE_EQ(out->numel(), height);
    auto inv_size = 1.0 / size;
H
huzhiqiang 已提交
132
    T* out_buf = out->template mutable_data<T>(out->target());
Y
Yan Chunwei 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    const T* in_buf = input.data<T>();

    for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
      T sum = 0;
      for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
        sum += in_buf[i * size + j];
      }
      out_buf[i] = sum * inv_size;
    }
  }
};

template <lite::TargetType Target, typename T>
void RowwiseSum<Target, T>::operator()(const lite::Context<Target>& context,
                                       const lite::TensorLite& input,
                                       lite::TensorLite* out) {
  auto in_dims = input.dims();
  PADDLE_ENFORCE_EQ(in_dims.size(), 2U);
  PADDLE_ENFORCE_EQ(out->numel(), in_dims[0]);

  auto in = lite::fluid::EigenMatrix<T>::From(input);
  auto vec = lite::fluid::EigenVector<T>::Flatten(*out);

  // vec.device(*context.eigen_device()) = in.sum(Eigen::array<int, 1>({{1}}));
  vec.device(typename lite::fluid::EigenDevice<Target>::Type()) =
      in.sum(Eigen::array<int, 1>({{1}}));
}
// TODO(zcd): Following ColwiseSum format, need to confirm.
// Specialize for CPU, since Eigen implement a general reduce. However,
// rowwise-sum can be easily implemented. General reduce has a huge overhead in
// CPU
template <typename T>
class RowwiseSum<lite::TargetType::kX86, T> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::TensorLite& input,
                  lite::TensorLite* out) {
    auto& in_dims = input.dims();
    PADDLE_ENFORCE_EQ(in_dims.size(), 2U);
    auto height = in_dims[0];
    auto size = in_dims[1];
    PADDLE_ENFORCE_EQ(out->numel(), height);

H
huzhiqiang 已提交
176
    T* out_buf = out->template mutable_data<T>(out->target());
Y
Yan Chunwei 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    const T* in_buf = input.data<T>();

    for (size_t i = 0; i < static_cast<size_t>(height); ++i) {
      T sum = 0;
      for (size_t j = 0; j < static_cast<size_t>(size); ++j) {
        sum += in_buf[i * size + j];
      }
      out_buf[i] = sum;
    }
  }
};

}  // namespace math
}  // namespace x86
}  // namespace lite
}  // namespace paddle