concat_buffer_compute.cc 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
21 22 23 24
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/profiler.h"
#endif
#include "lite/backends/opencl/cl_utility.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class ConcatCompute : public KernelLite<TARGET(kOpenCL),
                                        PRECISION(kFP16),
                                        DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::ConcatParam;

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    concat_param_ = param_.get_mutable<param_t>();
    if (concat_param_->x.size() == 2) {
      kernel_func_name_ = "concat2";
    } else {
      kernel_func_name_ = "concat_mul";
    }
45 46 47 48
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "buffer/concat_kernel.cl",
                                    build_options_,
                                    time_stamp_);
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

    auto axis = concat_param_->axis;
    auto inputs = concat_param_->x;
    auto out_dims = concat_param_->output->dims();
    auto* axis_tensor = concat_param_->axis_tensor;
    if (axis_tensor != nullptr) {
      // auto* axis_tensor_data = axis_tensor->data<int>(TARGET(kARM));
      // axis = axis_tensor_data[0];
    }

    auto in_dims = inputs[0]->dims();
    axis_size_ = out_dims[axis];
    axis_ = axis;
    for (int i = 0; i < axis; i++) {
      pre_size_ *= in_dims[i];
    }
    for (int i = axis + 1; i < in_dims.size(); i++) {
      post_size_ *= in_dims[i];
    }

    for (int i = 1; i < inputs.size(); i++) {
      auto dims = inputs[i]->dims();
      if (in_dims.size() != dims.size()) {
        printf("input shape must be same \n");
        return;
      }
      for (int i = 0; i < dims.size(); i++) {
        if (i != axis) {
          if (in_dims[i] != dims[i]) {
            printf("input shape must be same \n");
            return;
          }
        }
      }
    }
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.output->dims();
    auto image_shape = InitImageDimInfoWith(x_dims);
    auto* out_buf =
        param.output->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
    const auto& y_dims = param.output->dims();  // useless: check dim only

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
97
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    auto inputs = param.x;
    int arg_idx = 0;
    auto global_work_size = cl::NDRange{axis_size_};
    int total = axis_size_ * post_size_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
    if (inputs.size() == 2) {
      auto* x_buf0 = inputs[0]->data<float, cl::Buffer>();
      auto* x_buf1 = inputs[1]->data<float, cl::Buffer>();
      auto axis0 = inputs[0]->dims()[axis_];
      int total0 = axis0 * post_size_;
      int total1 = (axis_size_ - axis0) * post_size_;
      cl_int status = kernel.setArg(arg_idx, *x_buf0);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *x_buf1);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *out_buf);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, static_cast<int>(axis0));
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, axis_size_);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, pre_size_);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, post_size_);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, total);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, total0);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, total1);
      CL_CHECK_FATAL(status);
X
xiebaiyuan 已提交
130

131 132 133 134 135 136 137
      status = EnqueueNDRangeKernel(context,
                                    kernel,
                                    cl::NullRange,
                                    global_work_size,
                                    cl::NullRange,
                                    nullptr,
                                    event_);
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
      CL_CHECK_FATAL(status);
    } else {
      auto start = 0;
      for (int i = 0; i < inputs.size(); i++) {
        arg_idx = 0;
        int size = inputs[i]->dims()[axis_];
        auto* x_buf = inputs[i]->data<float, cl::Buffer>();
        global_work_size = cl::NDRange{static_cast<size_t>(size)};
        int total0 = size * post_size_;
        cl_int status = kernel.setArg(arg_idx, *x_buf);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, *out_buf);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, static_cast<int>(size));
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, pre_size_);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, post_size_);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, start);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, total);
        CL_CHECK_FATAL(status);
        status = kernel.setArg(++arg_idx, total0);
        CL_CHECK_FATAL(status);
X
xiebaiyuan 已提交
163

164 165 166 167 168 169 170
        status = EnqueueNDRangeKernel(context,
                                      kernel,
                                      cl::NullRange,
                                      global_work_size,
                                      cl::NullRange,
                                      nullptr,
                                      event_);
171 172 173 174 175 176 177 178
        CL_CHECK_FATAL(status);
        start += size;
      }
    }
  }

  std::string doc() { return "Concat using cl::Buffer, kFloat"; }

179 180 181 182 183 184 185 186
#ifdef LITE_WITH_PROFILE
  void SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) {
    ch->kernel_func_name = kernel_func_name_;
    ch->cl_event =
        event_;  // `event_` defined in `kernel.h`, valid after kernel::Run
  }
#endif

187 188 189 190 191 192 193
  int axis_size_ = 1;
  int post_size_ = 1;
  int pre_size_ = 1;
  int axis_ = 1;
  param_t* concat_param_{nullptr};
  std::string kernel_func_name_{};
  std::string build_options_{"-DCL_DTYPE_float"};
194
  std::string time_stamp_{GetTimeStamp()};
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

typedef paddle::lite::kernels::opencl::ConcatCompute Concat_buffer;

REGISTER_LITE_KERNEL(concat, kOpenCL, kFloat, kNCHW, Concat_buffer, def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindInput("AxisTensor",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kInt32),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
    .Finalize();