pool_3x3.cpp 25.5 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef POOL_OP
W
wangliu 已提交
16 17 18
#ifdef _OPENMP
#include <omp.h>
#endif
W
wangliu 已提交
19
#include "framework/tensor.h"
W
wangliu 已提交
20
#include "pool_3x3.h"
Z
zhaojiaying01 已提交
21
#if __ARM_NEON
22 23 24
#include <arm_neon.h>
#endif  // __ARM_NEON
#include <climits>
W
wangliu 已提交
25 26 27 28 29 30 31
namespace paddle_mobile {
namespace operators {
namespace math {
using framework::Tensor;
using std::max;
using std::min;
using std::vector;
W
wangliu 已提交
32
void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
Z
zhaojiaying01 已提交
33
#if __ARM_NEON
W
wangliu 已提交
34 35 36 37 38 39 40 41 42 43 44 45
  const int batch_size = input->dims()[0];

  const int h_in = input->dims()[2];

  const int w_in = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int h_out = output->dims()[2];
  const int w_out = output->dims()[3];
  const int outputdata_channel_stride = h_out * w_out;
  const int inputdata_channel_stride = h_in * w_in;
W
wangliu 已提交
46 47
  const int input_batch_stride = output_channels * inputdata_channel_stride;
  const int output_batch_stride = output_channels * outputdata_channel_stride;
W
wangliu 已提交
48 49
  float *out_data = output->data<float>();
  const float *input_data = input->data<float>();
W
wangliu 已提交
50

W
wangliu 已提交
51 52
  const float coef = 1.0 / 9.0;
  for (int k = 0; k < batch_size; ++k) {
W
wangliu 已提交
53
#pragma omp parallel for
W
wangliu 已提交
54
    for (int c = 0; c < output_channels; ++c) {
W
wangliu 已提交
55 56
      const float *input_seg = input_data + c * inputdata_channel_stride;
      float *output_seg = out_data + c * outputdata_channel_stride;
W
wangliu 已提交
57
      // four corner point
W
wangliu 已提交
58 59 60 61 62 63
      output_seg[0] = (input_seg[0] + input_seg[1] + input_seg[w_in] +
                       input_seg[w_in + 1]) *
                      coef;
      output_seg[w_out - 1] =
          (input_seg[w_in - 2] + input_seg[w_in - 1] + input_seg[w_in * 2 - 2] +
           input_seg[2 * w_in - 1]) *
W
wangliu 已提交
64
          coef;
W
wangliu 已提交
65 66 67
      output_seg[(h_out - 1) * w_out] =
          (input_seg[(h_in - 2) * w_in] + input_seg[(h_in - 2) * w_in + 1] +
           input_seg[(h_in - 1) * w_in] + input_seg[(h_in - 1) * w_in + 1]) *
W
wangliu 已提交
68
          coef;
W
wangliu 已提交
69 70 71 72
      output_seg[h_out * w_out - 1] =
          (input_seg[h_in * w_in - 1] + input_seg[h_in * w_in - 2] +
           input_seg[(h_in - 1) * w_in - 1] +
           input_seg[(h_in - 1) * w_in - 2]) *
W
wangliu 已提交
73 74 75
          coef;
      // left side & right side
      for (int i = 1; i < h_in - 1; ++i) {
W
wangliu 已提交
76 77 78 79
        output_seg[i * w_out] =
            (input_seg[i * w_in - w_in] + input_seg[i * w_in - w_in + 1] +
             input_seg[i * w_in] + input_seg[i * w_in + 1] +
             input_seg[i * w_in + w_in] + input_seg[i * w_in + w_in + 1]) *
W
wangliu 已提交
80
            coef;
W
wangliu 已提交
81 82 83 84 85 86 87
        output_seg[i * w_out + w_out - 1] =
            (input_seg[i * w_in - w_in + w_in - 2] +
             input_seg[i * w_in - w_in + 1 + w_in - 2] +
             input_seg[i * w_in + w_in - 2] +
             input_seg[i * w_in + 1 + w_in - 2] +
             input_seg[i * w_in + w_in + w_in - 2] +
             input_seg[i * w_in + w_in + 1 + w_in - 2]) *
W
wangliu 已提交
88 89 90
            coef;
      }
      // top 1 row & bottom 1 row
W
wangliu 已提交
91
      const float *input_tmp = input_seg;
W
wangliu 已提交
92 93 94 95 96 97 98 99 100 101

      float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
          tmp3, tmp4, tmp5, sum, out0;
      float32x4_t v_coef = vdupq_n_f32(coef);
      in0 = vld1q_f32(input_tmp);
      in2 = vld1q_f32(input_tmp + w_in);
      const float *input_tmp_end = input_tmp + (h_in - 2) * w_in;
      in4 = vld1q_f32(input_tmp_end);
      in6 = vld1q_f32(input_tmp_end + w_in);
      int c_mid = w_out - 2;
W
wangliu 已提交
102
      auto output_ptr = output_seg + 1;
W
wangliu 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
      for (; c_mid > 3; c_mid -= 4) {
        in1 = vld1q_f32(input_tmp + 4);
        in3 = vld1q_f32(input_tmp + w_in + 4);

        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);

        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);

        sum = vaddq_f32(in0, tmp0);
        sum = vaddq_f32(sum, tmp1);
        sum = vaddq_f32(sum, in2);
        sum = vaddq_f32(sum, tmp2);
        sum = vaddq_f32(sum, tmp3);

        vst1q_f32(output_ptr, vmulq_f32(sum, v_coef));

        in5 = vld1q_f32(input_tmp_end + 4);
        in7 = vld1q_f32(input_tmp_end + w_in + 4);

        tmp0 = vextq_f32(in4, in5, 1);
        tmp1 = vextq_f32(in4, in5, 2);
        tmp2 = vextq_f32(in6, in7, 1);
        tmp3 = vextq_f32(in6, in7, 2);

        sum = vaddq_f32(in0, tmp0);
        sum = vaddq_f32(sum, tmp1);
        sum = vaddq_f32(sum, in2);
        sum = vaddq_f32(sum, tmp2);
        sum = vaddq_f32(sum, tmp3);

        vst1q_f32(output_ptr + (h_out - 1) * w_out, vmulq_f32(sum, v_coef));

        // can optimize to each 8 stride.
        input_tmp += 4;
        input_tmp_end += 4;
        output_ptr += 4;
        in0 = in1;
        in2 = in3;
        in4 = in5;
        in6 = in7;
      }
      // top right remain
W
wangliu 已提交
147 148
      float32x4_t pad0 = vdupq_n_f32(input_seg[w_in - 1]);
      float32x4_t pad1 = vdupq_n_f32(input_seg[2 * w_in - 1]);
W
wangliu 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

      tmp0 = vextq_f32(in0, pad0, 1);
      tmp1 = vextq_f32(in0, pad0, 2);
      tmp2 = vextq_f32(in2, pad1, 2);
      tmp3 = vextq_f32(in2, pad1, 2);

      sum = vaddq_f32(in0, tmp0);
      sum = vaddq_f32(sum, tmp1);
      sum = vaddq_f32(sum, in2);
      sum = vaddq_f32(sum, tmp2);
      sum = vaddq_f32(sum, tmp3);
      out0 = vmulq_f32(sum, v_coef);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + i, out0, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + i, out0, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + i, out0, 2);
        }
      }

      // bottom_right remain
W
wangliu 已提交
175 176
      float32x4_t pad2 = vdupq_n_f32(input_seg[(h_in - 1) * w_in - 1]);
      float32x4_t pad3 = vdupq_n_f32(input_seg[h_in * w_in - 1]);
W
wangliu 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

      tmp0 = vextq_f32(in4, pad2, 1);
      tmp1 = vextq_f32(in4, pad2, 2);
      tmp2 = vextq_f32(in6, pad3, 2);
      tmp3 = vextq_f32(in6, pad3, 2);

      sum = vaddq_f32(in4, tmp0);
      sum = vaddq_f32(sum, tmp1);
      sum = vaddq_f32(sum, in6);
      sum = vaddq_f32(sum, tmp2);
      sum = vaddq_f32(sum, tmp3);
      out0 = vmulq_f32(sum, v_coef);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 2);
        }
      }
      // mid
      for (int j = 0; j < h_out - 2; ++j) {
W
wangliu 已提交
203 204
        output_ptr = output_seg + w_out * (j + 1) + 1;
        input_tmp = input_seg + j * w_in;
W
wangliu 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

        in0 = vld1q_f32(input_tmp);
        in2 = vld1q_f32(input_tmp + w_in);
        in4 = vld1q_f32(input_tmp + 2 * w_in);
        c_mid = w_out - 2;
        for (; c_mid > 3; c_mid -= 4) {
          in1 = vld1q_f32(input_tmp + 4);
          in3 = vld1q_f32(input_tmp + w_in + 4);
          in5 = vld1q_f32(input_tmp + 2 * w_in + 4);

          tmp0 = vextq_f32(in0, in1, 1);
          tmp1 = vextq_f32(in0, in1, 2);
          tmp2 = vextq_f32(in2, in3, 1);
          tmp3 = vextq_f32(in2, in3, 2);
          tmp4 = vextq_f32(in4, in5, 1);
          tmp5 = vextq_f32(in4, in5, 2);

          sum = vaddq_f32(in0, tmp0);
          sum = vaddq_f32(sum, tmp1);
          sum = vaddq_f32(sum, in2);
          sum = vaddq_f32(sum, tmp2);
          sum = vaddq_f32(sum, tmp3);
          sum = vaddq_f32(sum, in4);
          sum = vaddq_f32(sum, tmp4);
          sum = vaddq_f32(sum, tmp5);

          out0 = vmulq_f32(sum, v_coef);
          vst1q_f32(output_ptr, out0);
          output_ptr += 4;
          input_tmp += 4;
          in0 = in1;
          in2 = in3;
          in4 = in5;
        }
        // mid remain
W
wangliu 已提交
240 241 242
        float32x4_t pad0 = vdupq_n_f32(input_seg[(j + 1) * w_in - 1]);
        float32x4_t pad1 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]);
        float32x4_t pad2 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]);
W
wangliu 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

        tmp0 = vextq_f32(in0, pad0, 1);
        tmp1 = vextq_f32(in0, pad0, 2);
        tmp2 = vextq_f32(in2, pad1, 1);
        tmp3 = vextq_f32(in2, pad1, 2);
        tmp4 = vextq_f32(in4, pad2, 1);
        tmp5 = vextq_f32(in4, pad2, 2);

        sum = vaddq_f32(in0, tmp0);
        sum = vaddq_f32(sum, tmp1);
        sum = vaddq_f32(sum, in2);
        sum = vaddq_f32(sum, tmp2);
        sum = vaddq_f32(sum, tmp3);
        sum = vaddq_f32(sum, in4);
        sum = vaddq_f32(sum, tmp4);
        sum = vaddq_f32(sum, tmp5);
        out0 = vmulq_f32(sum, v_coef);

        for (int i = 0; i < c_mid; ++i) {
          if (i == 0) {
            vst1q_lane_f32(output_ptr + i, out0, 0);
          }
          if (i == 1) {
            vst1q_lane_f32(output_ptr + i, out0, 1);
          }
          if (i == 2) {
            vst1q_lane_f32(output_ptr + i, out0, 2);
          }
        }
      }
W
wangliu 已提交
273 274
      //      input_data += inputdata_channel_stride;
      //      out_data += outputdata_channel_stride;
W
wangliu 已提交
275
    }
W
wangliu 已提交
276 277
    input_data += input_batch_stride;
    out_data += output_batch_stride;
W
wangliu 已提交
278 279 280 281 282
  }
#endif
}

void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
Z
zhaojiaying01 已提交
283
#if __ARM_NEON
W
wangliu 已提交
284 285 286 287 288 289 290 291 292 293 294 295
  const int batch_size = input->dims()[0];

  const int h_in = input->dims()[2];

  const int w_in = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int h_out = output->dims()[2];
  const int w_out = output->dims()[3];
  const int outputdata_channel_stride = h_out * w_out;
  const int inputdata_channel_stride = h_in * w_in;
W
wangliu 已提交
296 297
  const int input_batch_stride = output_channels * inputdata_channel_stride;
  const int output_batch_stride = output_channels * outputdata_channel_stride;
W
wangliu 已提交
298 299 300
  float *out_data = output->data<float>();
  const float *input_data = input->data<float>();
  for (int k = 0; k < batch_size; ++k) {
W
wangliu 已提交
301
#pragma omp parallel for
W
wangliu 已提交
302
    for (int c = 0; c < output_channels; ++c) {
W
wangliu 已提交
303 304
      const float *input_seg = input_data + c * inputdata_channel_stride;
      float *output_seg = out_data + c * outputdata_channel_stride;
W
wangliu 已提交
305
      // four corner point
W
wangliu 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319
      output_seg[0] = std::max(std::max(input_seg[0], input_seg[1]),
                               std::max(input_seg[w_in], input_seg[w_in + 1]));
      output_seg[w_out - 1] =
          std::max(std::max(input_seg[w_in - 2], input_seg[w_in - 1]),
                   std::max(input_seg[w_in * 2 - 2], input_seg[2 * w_in - 1]));
      output_seg[(h_out - 1) * w_out] =
          std::max(std::max(input_seg[(h_in - 2) * w_in],
                            input_seg[(h_in - 2) * w_in + 1]),
                   std::max(input_seg[(h_in - 1) * w_in],
                            input_seg[(h_in - 1) * w_in + 1]));
      output_seg[h_out * w_out - 1] = std::max(
          std::max(input_seg[(h_in - 1) * w_in - 1],
                   input_seg[(h_in - 1) * w_in - 2]),
          std::max(input_seg[h_in * w_in - 1], input_seg[h_in * w_in - 2]));
W
wangliu 已提交
320 321
      // left side & right side
      for (int i = 1; i < h_in - 1; ++i) {
W
wangliu 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
        float max1 = std::max(input_seg[i * w_in - w_in],
                              input_seg[i * w_in - w_in + 1]);
        float max2 = std::max(input_seg[i * w_in], input_seg[i * w_in + 1]);
        float max3 = std::max(input_seg[i * w_in + w_in],
                              input_seg[i * w_in + w_in + 1]);
        output_seg[i * w_out] = std::max(std::max(max1, max2), max3);

        max1 = std::max(input_seg[i * w_in - w_in + w_in - 2],
                        input_seg[i * w_in - w_in + 1 + w_in - 2]);
        max2 = std::max(input_seg[i * w_in + w_in - 2],
                        input_seg[i * w_in + 1 + w_in - 2]);
        max3 = std::max(input_seg[i * w_in + w_in + w_in - 2],
                        input_seg[i * w_in + w_in + 1 + w_in - 2]);
        output_seg[i * w_out + w_out - 1] =
            std::max(std::max(max1, max2), max3);
W
wangliu 已提交
337 338
      }
      // top 1 row & bottom 1 row
W
wangliu 已提交
339
      const float *input_tmp = input_seg;
W
wangliu 已提交
340 341 342 343 344 345 346 347 348

      float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
          tmp3, tmp4, tmp5, max;
      in0 = vld1q_f32(input_tmp);
      in2 = vld1q_f32(input_tmp + w_in);
      const float *input_tmp_end = input_tmp + (h_in - 2) * w_in;
      in4 = vld1q_f32(input_tmp_end);
      in6 = vld1q_f32(input_tmp_end + w_in);
      int c_mid = w_out - 2;
W
wangliu 已提交
349
      auto output_ptr = output_seg + 1;
W
wangliu 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
      for (; c_mid > 3; c_mid -= 4) {
        in1 = vld1q_f32(input_tmp + 4);
        in3 = vld1q_f32(input_tmp + w_in + 4);

        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);

        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);

        max = vmaxq_f32(in0, tmp0);
        max = vmaxq_f32(max, tmp1);
        max = vmaxq_f32(max, in2);
        max = vmaxq_f32(max, tmp2);
        max = vmaxq_f32(max, tmp3);

        vst1q_f32(output_ptr, max);

        in5 = vld1q_f32(input_tmp_end + 4);
        in7 = vld1q_f32(input_tmp_end + w_in + 4);

        tmp0 = vextq_f32(in4, in5, 1);
        tmp1 = vextq_f32(in4, in5, 2);
        tmp2 = vextq_f32(in6, in7, 1);
        tmp3 = vextq_f32(in6, in7, 2);

        max = vmaxq_f32(in4, tmp0);
        max = vmaxq_f32(max, tmp1);
        max = vmaxq_f32(max, in6);
        max = vmaxq_f32(max, tmp2);
        max = vmaxq_f32(max, tmp3);

        vst1q_f32(output_ptr + (h_out - 1) * w_out, max);

        input_tmp += 4;
        input_tmp_end += 4;
        output_ptr += 4;
        in0 = in1;
        in2 = in3;
        in4 = in5;
        in6 = in7;
      }
      // top right remain
W
wangliu 已提交
393 394
      float32x4_t pad0 = vdupq_n_f32(input_seg[w_in - 1]);
      float32x4_t pad1 = vdupq_n_f32(input_seg[2 * w_in - 1]);
W
wangliu 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

      tmp0 = vextq_f32(in0, pad0, 1);
      tmp1 = vextq_f32(in0, pad0, 2);
      tmp2 = vextq_f32(in2, pad1, 1);
      tmp3 = vextq_f32(in2, pad1, 2);

      max = vmaxq_f32(in0, tmp0);
      max = vmaxq_f32(max, tmp1);
      max = vmaxq_f32(max, in2);
      max = vmaxq_f32(max, tmp2);
      max = vmaxq_f32(max, tmp3);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + i, max, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + i, max, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + i, max, 2);
        }
      }

      // bottom_right remain
W
wangliu 已提交
420 421
      float32x4_t pad2 = vdupq_n_f32(input_seg[(h_in - 1) * w_in - 1]);
      float32x4_t pad3 = vdupq_n_f32(input_seg[h_in * w_in - 1]);
W
wangliu 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

      tmp0 = vextq_f32(in4, pad2, 1);
      tmp1 = vextq_f32(in4, pad2, 2);
      tmp2 = vextq_f32(in6, pad3, 1);
      tmp3 = vextq_f32(in6, pad3, 2);

      max = vmaxq_f32(in4, tmp0);
      max = vmaxq_f32(max, tmp1);
      max = vmaxq_f32(max, in6);
      max = vmaxq_f32(max, tmp2);
      max = vmaxq_f32(max, tmp3);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, max, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, max, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, max, 2);
        }
      }
      // mid
      for (int j = 0; j < h_out - 2; ++j) {
W
wangliu 已提交
447 448
        output_ptr = output_seg + (j + 1) * w_out + 1;
        input_tmp = input_seg + j * w_in;
W
wangliu 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

        in0 = vld1q_f32(input_tmp);
        in2 = vld1q_f32(input_tmp + w_in);
        in4 = vld1q_f32(input_tmp + 2 * w_in);
        c_mid = w_out - 2;
        for (; c_mid > 3; c_mid -= 4) {
          in1 = vld1q_f32(input_tmp + 4);
          in3 = vld1q_f32(input_tmp + w_in + 4);
          in5 = vld1q_f32(input_tmp + 2 * w_in + 4);

          tmp0 = vextq_f32(in0, in1, 1);
          tmp1 = vextq_f32(in0, in1, 2);
          tmp2 = vextq_f32(in2, in3, 1);
          tmp3 = vextq_f32(in2, in3, 2);
          tmp4 = vextq_f32(in4, in5, 1);
          tmp5 = vextq_f32(in4, in5, 2);

          max = vmaxq_f32(in0, tmp0);
          max = vmaxq_f32(max, tmp1);
          max = vmaxq_f32(max, in2);
          max = vmaxq_f32(max, tmp2);
          max = vmaxq_f32(max, tmp3);
          max = vmaxq_f32(max, in4);
          max = vmaxq_f32(max, tmp4);
          max = vmaxq_f32(max, tmp5);

          vst1q_f32(output_ptr, max);
          output_ptr += 4;
          input_tmp += 4;
          in0 = in1;
          in2 = in3;
          in4 = in5;
        }
        // mid remain
W
wangliu 已提交
483 484 485
        float32x4_t pad0 = vdupq_n_f32(input_seg[(j + 1) * w_in - 1]);
        float32x4_t pad1 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]);
        float32x4_t pad2 = vdupq_n_f32(input_seg[(j + 3) * w_in - 1]);
W
wangliu 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

        tmp0 = vextq_f32(in0, pad0, 1);
        tmp1 = vextq_f32(in0, pad0, 2);
        tmp2 = vextq_f32(in2, pad1, 1);
        tmp3 = vextq_f32(in2, pad1, 2);
        tmp4 = vextq_f32(in4, pad2, 1);
        tmp5 = vextq_f32(in4, pad2, 2);

        max = vmaxq_f32(in0, tmp0);
        max = vmaxq_f32(max, tmp1);
        max = vmaxq_f32(max, in2);
        max = vmaxq_f32(max, tmp2);
        max = vmaxq_f32(max, tmp3);
        max = vmaxq_f32(max, in4);
        max = vmaxq_f32(max, tmp4);
        max = vmaxq_f32(max, tmp5);

        for (int i = 0; i < c_mid; ++i) {
          if (i == 0) {
            vst1q_lane_f32(output_ptr + i, max, 0);
          }
          if (i == 1) {
            vst1q_lane_f32(output_ptr + i, max, 1);
          }
          if (i == 2) {
            vst1q_lane_f32(output_ptr + i, max, 2);
          }
        }
      }
W
wangliu 已提交
515 516
      //      input_data += inputdata_channel_stride;
      //      out_data += outputdata_channel_stride;
W
wangliu 已提交
517
    }
W
wangliu 已提交
518 519
    input_data += input_batch_stride;
    out_data += output_batch_stride;
W
wangliu 已提交
520 521 522
  }
#endif
}
W
wangliu 已提交
523 524 525

void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
                Tensor *output) {
Z
zhaojiaying01 已提交
526
#if __ARM_NEON
W
wangliu 已提交
527 528 529 530 531 532 533 534 535 536
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
W
wangliu 已提交
537 538 539 540 541
  //  const int _kernel_size = 3;
  const int stride = strides[0];
  //  const int stride_width = strides[1];
  const int padding = paddings[0];
  //  const int padding_width = paddings[1];
W
wangliu 已提交
542 543 544 545 546 547 548 549 550
  const float negative_max = -INT_MAX;
  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;

  const float *input_data = input->data<float>();
  float *output_data = output->mutable_data<float>();

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
W
wangliu 已提交
551
  const float *pos1, *output_ptr;
W
wangliu 已提交
552 553
  int hstart, wstart, hend, wend;
  for (int i = 0; i < batch_size; ++i) {
W
wangliu 已提交
554
#pragma omp parallel for
W
wangliu 已提交
555
    for (int c = 0; c < output_channels; ++c) {
W
wangliu 已提交
556 557
      const float *input_seg = input_data + c * input_channel_stride;
      float *output_seg = output_data + c * output_channel_stride;
W
wangliu 已提交
558 559
      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
W
wangliu 已提交
560 561 562 563
          int hstart = ph * stride - padding;
          int wstart = pw * stride - padding;
          int hend = min(hstart + 3, input_height + padding);
          int wend = min(wstart + 3, input_width + padding);
W
wangliu 已提交
564 565 566 567
          hstart = max(hstart, 0);
          wstart = max(wstart, 0);
          hend = min(hend, input_height);
          wend = min(wend, input_width);
W
wangliu 已提交
568 569 570 571
          const float *pos1 = input_seg + hstart * input_width + wstart;
          const float *pos2 = input_seg + (hstart + 1) * input_width + wstart;
          const float *pos3 = input_seg + (hstart + 2) * input_width + wstart;
          output_ptr = output_seg + ph * output_width + pw;
W
wangliu 已提交
572 573 574 575 576

          if (hend - hstart != 3 || wend - wstart != 3) {
            float max_value = -INT_MAX;
            for (int h = hstart; h < hend; h++) {
              for (int w = wstart; w < wend; w++) {
W
wangliu 已提交
577
                float value = input_seg[h * input_width + w];
W
wangliu 已提交
578 579 580 581 582
                if (value > max_value) {
                  max_value = value;
                }
              }
            }
W
wangliu 已提交
583
            output_seg[ph * output_width + pw] = max_value;
W
wangliu 已提交
584
          } else {
Z
zhaojiaying01 已提交
585
#if defined(ARMV7)
W
wangliu 已提交
586 587 588 589 590 591 592 593 594 595 596
            asm volatile(
                "vld1.32  {q1}, [%[pos1]]        \n\t"
                "vld1.32  {q2}, [%[pos2]]        \n\t"
                "vld1.32  {q3}, [%[pos3]]        \n\t"
                "vmax.f32 q1, q1, q2            \n\t"
                "vmax.f32 q2, q1, q3            \n\t"
                "vmov.f32 d5[1],  %[negative_max]         \n\t"
                "vpmax.f32  d6, d4, d5            \n\t"
                "vpmax.f32  d7, d6, d6             \n\t"
                "vst1.32 {d7[0]},[%[output_ptr]]    \n\t"
                :
W
wangliu 已提交
597
                : [input_seg] "r"(input_seg), [pos1] "r"(pos1),
W
wangliu 已提交
598 599 600 601 602
                  [pos2] "r"(pos2), [pos3] "r"(pos3),
                  [output_ptr] "r"(output_ptr), [negative_max] "r"(negative_max)
                : "memory", "q1", "q2", "q3", "q4");
#else
            const float32x4_t data1 = vld1q_f32(pos1);
W
wangliu 已提交
603 604
            const float32x4_t data2 = vld1q_f32(pos1 + input_width);
            const float32x4_t data3 = vld1q_f32(pos1 + 2 * input_width);
W
wangliu 已提交
605
            const float32x4_t max_data =
W
wangliu 已提交
606
                vmaxq_f32(vmaxq_f32(data1, data2), data3);
W
wangliu 已提交
607 608 609 610
            float32x2_t res =
                vpmax_f32(vget_high_f32(vsetq_lane_f32(-INT_MAX, max_data, 3)),
                          vget_low_f32(max_data));
            res = vpmax_f32(res, res);
W
wangliu 已提交
611
            output_seg[ph * output_width + pw] = vget_lane_f32(res, 0);
W
wangliu 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624
#endif
          }
        }
      }
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
#endif
}

void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
                Tensor *output) {
Z
zhaojiaying01 已提交
625
#if __ARM_NEON
W
wangliu 已提交
626 627 628 629 630 631 632 633 634 635
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
W
wangliu 已提交
636 637
  const int stride = strides[0];
  const int padding = paddings[0];
W
wangliu 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650

  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;

  const float *input_data = input->data<float>();
  float *output_data = output->mutable_data<float>();
  const float zero = 0;
  const float nine = 1.0 / 9.0;
  const float nine_ptr[] = {nine, nine};

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
  for (int i = 0; i < batch_size; ++i) {
W
wangliu 已提交
651
#pragma omp parallel for
W
wangliu 已提交
652
    for (int c = 0; c < output_channels; ++c) {
W
wangliu 已提交
653 654
      const float *input_seg = input_data + c * input_channel_stride;
      float *output_seg = output_data + c * output_channel_stride;
W
wangliu 已提交
655 656
      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
W
wangliu 已提交
657 658 659 660
          int hstart = ph * stride - padding;
          int wstart = pw * stride - padding;
          int hend = min(hstart + 3, input_height + padding);
          int wend = min(wstart + 3, input_width + padding);
W
wangliu 已提交
661 662 663 664
          hstart = max(hstart, 0);
          wstart = max(wstart, 0);
          hend = min(hend, input_height);
          wend = min(wend, input_width);
W
wangliu 已提交
665 666 667 668
          const float *pos1 = input_seg + hstart * input_width + wstart;
          const float *pos2 = input_seg + (hstart + 1) * input_width + wstart;
          const float *pos3 = input_seg + (hstart + 2) * input_width + wstart;
          float *output_ptr = output_seg + ph * output_width + pw;
W
wangliu 已提交
669 670 671 672 673

          if (hend - hstart != 3 || wend - wstart != 3) {
            float sum = 0;
            for (int h = hstart; h < hend; h++) {
              for (int w = wstart; w < wend; w++) {
W
wangliu 已提交
674
                sum += input_seg[h * input_width + w];
W
wangliu 已提交
675 676
              }
            }
W
wangliu 已提交
677
            output_seg[ph * output_width + pw] = sum / 9.0;
W
wangliu 已提交
678
          } else {
Z
zhaojiaying01 已提交
679
#if defined(ARMV7)
W
wangliu 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693

            asm volatile(
                "vld1.32  {q1}, [%[pos1]]        \n\t"
                "vld1.32  {q2}, [%[pos2]]        \n\t"
                "vld1.32  {q3}, [%[pos3]]        \n\t"
                "vadd.f32 q1, q1, q2            \n\t"
                "vadd.f32 q2, q1, q3            \n\t"
                "vmov.f32 d5[1],  %[zero]         \n\t"
                "vpadd.f32  d6, d4, d5            \n\t"
                "vpadd.f32  d6, d6, d6             \n\t"
                "vld1.f32 d7, [%[nine_ptr]]!        \n\t"
                "vmul.f32 d6,d7                     \n\t"
                "vst1.32 {d6[0]},[%[output_ptr]]    \n\t"
                :
W
wangliu 已提交
694
                : [input_seg] "r"(input_seg), [pos1] "r"(pos1),
W
wangliu 已提交
695 696 697 698 699 700 701 702 703 704 705 706 707 708
                  [pos2] "r"(pos2), [pos3] "r"(pos3),
                  [output_ptr] "r"(output_ptr), [zero] "r"(zero),
                  [nine_ptr] "r"(nine_ptr)
                : "memory", "r6", "q1", "q2", "q3", "q4");
#else
            const float32x4_t data1 = vld1q_f32(pos1);
            const float32x4_t data2 = vld1q_f32(pos2);
            const float32x4_t data3 = vld1q_f32(pos3);
            const float32x4_t sum_data =
                vaddq_f32(vaddq_f32(data1, data3), data2);
            float32x2_t res =
                vpadd_f32(vget_high_f32(vsetq_lane_f32(0, sum_data, 3)),
                          vget_low_f32(sum_data));
            res = vpadd_f32(res, res);
W
wangliu 已提交
709
            output_seg[ph * output_width + pw] = vget_lane_f32(res, 0) / 9.0;
W
wangliu 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
#endif
          }
        }
      }
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
#endif
}
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile

#endif