elementwise_compute.cc 19.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/elementwise_compute.h"
#include <string>
#include <vector>
18
#include "lite/backends/arm/math/funcs.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

inline DDim trim_trailing_singular_dims(const DDim& dims) {
  // Remove trailing dimensions of size 1 for y
  auto actual_dims_size = dims.size();
  for (; actual_dims_size != 0; --actual_dims_size) {
    if (dims[actual_dims_size - 1] != 1) break;
  }

  std::vector<int64_t> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
  }
  if (trim_dims.size() == 0) {
38
    return DDim();
Y
Yan Chunwei 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52
  }
  return DDim(trim_dims);
}

inline bool is_broadcast(const DDim& x_dims,
                         const DDim& y_dims,
                         int axis,
                         int* pre,
                         int* n,
                         int* post) {
  if (axis < 0) {
    axis = x_dims.size() - y_dims.size();
  }
  DDim y_dim_trim = trim_trailing_singular_dims(y_dims);
53
  axis = (y_dim_trim.size() == 0) ? x_dims.size() : axis;
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  if (x_dims.size() == y_dim_trim.size()) {
    return false;
  }
  *pre = 1;
  *n = 1;
  *post = 1;
  for (int i = 0; i < axis; ++i) {
    (*pre) *= x_dims[i];
  }
  for (int i = 0; i < y_dim_trim.size(); ++i) {
    CHECK_EQ(x_dims[i + axis], y_dim_trim[i])
        << "Broadcast dimension mismatch.";
    (*n) *= y_dim_trim[i];
  }
  for (int i = axis + y_dim_trim.size(); i < x_dims.size(); ++i) {
    (*post) *= x_dims[i];
  }
  return true;
}

void ElementwiseAddCompute::Run() {
  auto& param = Param<operators::ElementwiseParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
83 84 85 86 87
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_add_broadcast(
        y_data, x_data, out_data, pre, n, post);
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
Y
Yan Chunwei 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    lite::arm::math::elementwise_add_broadcast(
        x_data, y_data, out_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_add(
        x_data, y_data, out_data, x_dims.production());
  }
}

void ElementwiseAddActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
106 107 108 109 110 111 112 113 114
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
      lite::arm::math::elementwise_add_relu_broadcast(
          y_data, x_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
Y
Yan Chunwei 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    if (act_type == "relu") {
      lite::arm::math::elementwise_add_relu_broadcast(
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
      lite::arm::math::elementwise_add_relu(
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
}

131 132 133 134 135 136 137 138 139
void ElementwiseSubCompute::Run() {
  auto& param = Param<operators::ElementwiseParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
140 141 142 143 144
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_sub_broadcast(
        y_data, x_data, out_data, pre, n, post);
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    lite::arm::math::elementwise_sub_broadcast(
        x_data, y_data, out_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_sub(
        x_data, y_data, out_data, x_dims.production());
  }
}

void ElementwiseSubActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
163 164 165 166 167 168 169 170 171 172 173

  if (act_type != "relu") {
    LOG(FATAL) << "unsupported Activation type: " << act_type;
  }
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_sub_relu_broadcast(
        y_data, x_data, out_data, pre, n, post);
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_sub_relu_broadcast(
        x_data, y_data, out_data, pre, n, post);
174
  } else {
175 176
    lite::arm::math::elementwise_sub_relu(
        x_data, y_data, out_data, x_dims.production());
177 178 179
  }
}

J
juncaipeng 已提交
180 181 182
template <typename T, PrecisionType PType>
void ElementwiseMulCompute<T, PType>::Run() {
  auto& param = this->template Param<operators::ElementwiseParam>();
183 184 185 186 187 188 189 190 191 192 193 194 195 196
  auto* x_data = param.X->template data<T>();
  auto* y_data = param.Y->template data<T>();
  auto* out_data = param.Out->template mutable_data<T>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_mul_broadcast<T>(
        y_data, x_data, out_data, pre, n, post);
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_mul_broadcast<T>(
        x_data, y_data, out_data, pre, n, post);
Y
Yan Chunwei 已提交
197
  } else {
198 199
    lite::arm::math::elementwise_mul<T>(
        x_data, y_data, out_data, x_dims.production());
Y
Yan Chunwei 已提交
200 201 202
  }
}

203 204 205 206 207 208 209
template <typename T, PrecisionType PType>
void ElementwiseMulActivationCompute<T, PType>::Run() {
  auto& param =
      this->template Param<operators::FusionElementwiseActivationParam>();
  auto* x_data = param.X->template data<T>();
  auto* y_data = param.Y->template data<T>();
  auto* out_data = param.Out->template mutable_data<T>();
Y
Yan Chunwei 已提交
210 211 212 213 214
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
215 216 217
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
218
      lite::arm::math::elementwise_mul_relu_broadcast<T>(
X
xiaogang 已提交
219 220 221 222 223
          y_data, x_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
Y
Yan Chunwei 已提交
224
    if (act_type == "relu") {
225
      lite::arm::math::elementwise_mul_relu_broadcast<T>(
Y
Yan Chunwei 已提交
226 227 228 229 230 231
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
232
      lite::arm::math::elementwise_mul_relu<T>(
Y
Yan Chunwei 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
}

void ElementwiseMaxCompute::Run() {
  auto& param = Param<operators::ElementwiseParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
249 250 251 252 253
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_max_broadcast(
        y_data, x_data, out_data, pre, n, post);
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
Y
Yan Chunwei 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    lite::arm::math::elementwise_max_broadcast(
        x_data, y_data, out_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_max(
        x_data, y_data, out_data, x_dims.production());
  }
}

void ElementwiseMaxActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
272 273 274 275 276 277 278 279 280
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
      lite::arm::math::elementwise_max_relu_broadcast<float>(
          y_data, x_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
Y
Yan Chunwei 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    if (act_type == "relu") {
      lite::arm::math::elementwise_max_relu_broadcast(
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
      lite::arm::math::elementwise_max_relu(
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
}

297 298 299 300 301 302
template <typename T, PrecisionType PType>
void ElementwiseDivCompute<T, PType>::Run() {
  auto& param = this->template Param<operators::ElementwiseParam>();
  auto* x_data = param.X->template data<T>();
  auto* y_data = param.Y->template data<T>();
  auto* out_data = param.Out->template mutable_data<T>();
303 304 305 306
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
X
xiaogang 已提交
307 308 309
  if (x_dims.size() < y_dims.size()) {
    LOG(FATAL) << "elewise div don't support x_dims size < y_dims size";
  }
310
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
311
    lite::arm::math::elementwise_div_broadcast<T>(
312 313
        x_data, y_data, out_data, pre, n, post);
  } else {
314
    lite::arm::math::elementwise_div<T>(
315 316 317 318 319 320 321 322 323 324 325 326 327
        x_data, y_data, out_data, x_dims.production());
  }
}

void ElementwiseDivActivationCompute::Run() {
  auto& param = Param<operators::FusionElementwiseActivationParam>();
  const float* x_data = param.X->data<float>();
  const float* y_data = param.Y->data<float>();
  float* out_data = param.Out->mutable_data<float>();
  int axis = param.axis;
  std::string act_type = param.act_type;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
X
xiaogang 已提交
328 329 330
  if (x_dims.size() < y_dims.size()) {
    LOG(FATAL) << "elewise div don't support x_dims size < y_dims size";
  }
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
  int pre, n, post;
  if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    if (act_type == "relu") {
      lite::arm::math::elementwise_div_relu_broadcast(
          x_data, y_data, out_data, pre, n, post);
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  } else {
    if (act_type == "relu") {
      lite::arm::math::elementwise_div_relu(
          x_data, y_data, out_data, x_dims.production());
    } else {
      LOG(FATAL) << "unsupported Activation type: " << act_type;
    }
  }
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
template <typename T, PrecisionType PType>
void ElementwiseModCompute<T, PType>::Run() {
  auto& param = this->template Param<operators::ElementwiseParam>();
  auto* x_data = param.X->template data<T>();
  auto* y_data = param.Y->template data<T>();
  auto* out_data = param.Out->template mutable_data<T>();
  int axis = param.axis;
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int pre, n, post;
  if (x_dims.size() < y_dims.size() &&
      is_broadcast(y_dims, x_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_mod_broadcast<T>(
        y_data, x_data, out_data, pre, n, post);
  } else if (is_broadcast(x_dims, y_dims, axis, &pre, &n, &post)) {
    lite::arm::math::elementwise_mod_broadcast<T>(
        x_data, y_data, out_data, pre, n, post);
  } else {
    lite::arm::math::elementwise_mod<T>(
        x_data, y_data, out_data, x_dims.production());
  }
}

Y
Yan Chunwei 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(elementwise_add,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseAddCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_add_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseAddActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
REGISTER_LITE_KERNEL(elementwise_sub,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseSubCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_sub_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseSubActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

423
using elementwise_mul_float_t =
J
juncaipeng 已提交
424 425
    paddle::lite::kernels::arm::ElementwiseMulCompute<float, PRECISION(kFloat)>;
REGISTER_LITE_KERNEL(
426
    elementwise_mul, kARM, kFloat, kNCHW, elementwise_mul_float_t, def)
Y
Yan Chunwei 已提交
427 428 429 430 431
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

432
using elementwise_mul_int32_t =
J
juncaipeng 已提交
433 434
    paddle::lite::kernels::arm::ElementwiseMulCompute<int, PRECISION(kInt32)>;
REGISTER_LITE_KERNEL(
435
    elementwise_mul, kARM, kInt32, kNCHW, elementwise_mul_int32_t, def)
J
juncaipeng 已提交
436 437 438 439 440
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt32))})
    .Finalize();

441
using elementwise_mul_int64_t =
442 443 444
    paddle::lite::kernels::arm::ElementwiseMulCompute<int64_t,
                                                      PRECISION(kInt64)>;
REGISTER_LITE_KERNEL(
445
    elementwise_mul, kARM, kInt64, kNCHW, elementwise_mul_int64_t, def)
446 447 448 449 450
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .Finalize();

451 452 453 454 455 456 457 458
using fusion_elementwise_mul_activation_float_t = paddle::lite::kernels::arm::
    ElementwiseMulActivationCompute<float, PRECISION(kFloat)>;
REGISTER_LITE_KERNEL(fusion_elementwise_mul_activation,
                     kARM,
                     kFloat,
                     kNCHW,
                     fusion_elementwise_mul_activation_float_t,
                     def)
Y
Yan Chunwei 已提交
459 460 461 462 463
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

464 465 466 467 468 469 470 471 472 473 474 475 476
using fusion_elementwise_mul_activation_int64_t = paddle::lite::kernels::arm::
    ElementwiseMulActivationCompute<int64_t, PRECISION(kInt64)>;
REGISTER_LITE_KERNEL(fusion_elementwise_mul_activation,
                     kARM,
                     kInt64,
                     kNCHW,
                     fusion_elementwise_mul_activation_int64_t,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .Finalize();

Y
Yan Chunwei 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
REGISTER_LITE_KERNEL(elementwise_max,
                     kARM,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::arm::ElementwiseMaxCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_max_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseMaxActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
499

500
using elementwise_div_fp32_t =
501 502 503
    paddle::lite::kernels::arm::ElementwiseDivCompute<float, PRECISION(kFloat)>;

REGISTER_LITE_KERNEL(
504
    elementwise_div, kARM, kFloat, kNCHW, elementwise_div_fp32_t, def)
505 506 507 508 509
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();

510
using elementwise_div_int64_t =
511 512 513 514
    paddle::lite::kernels::arm::ElementwiseDivCompute<int64_t,
                                                      PRECISION(kInt64)>;

REGISTER_LITE_KERNEL(
515
    elementwise_div, kARM, kInt64, kNCHW, elementwise_div_int64_t, def)
516 517 518 519 520
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .Finalize();

521 522 523 524 525 526 527 528 529 530 531
REGISTER_LITE_KERNEL(
    fusion_elementwise_div_activation,
    kARM,
    kFloat,
    kNCHW,
    paddle::lite::kernels::arm::ElementwiseDivActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
532

533
using elementwise_mod_int64_t =
534 535 536
    paddle::lite::kernels::arm::ElementwiseModCompute<int64_t,
                                                      PRECISION(kInt64)>;
REGISTER_LITE_KERNEL(
537
    elementwise_mod, kARM, kInt64, kNCHW, elementwise_mod_int64_t, def)
538 539 540 541
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM), PRECISION(kInt64))})
    .Finalize();