op_param.h 66.5 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
50
class OpParam {
朔-望's avatar
朔-望 已提交
51
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
52 53 54 55
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
56 57 58 59 60
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

61 62 63 64 65 66 67 68 69
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
70 71 72 73 74
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

102 103 104 105
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
106 107 108 109 110 111

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

112 113 114 115 116
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
117 118 119 120 121
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

122 123 124 125 126
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
127 128 129 130
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
131 132 133 134 135 136 137 138 139 140 141 142
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
143 144 145 146
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
163

E
eclipsess 已提交
164 165 166 167 168 169 170 171 172 173
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
174 175 176 177
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
178

179
  template <typename T>
W
wangliu 已提交
180 181
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
182 183 184
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

214 215 216 217 218 219 220 221 222 223
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
224 225 226 227 228 229
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

230 231 232 233 234
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
235 236 237 238 239 240
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
241 242 243 244 245
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
246 247 248 249 250 251
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

252 253 254 255 256 257 258 259 260 261 262
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
263
  static const T GetAttr(const string &key, const AttributeMap &map) {
264 265 266
    return ((Attribute)map.at(key)).Get<T>();
  }

267 268 269 270
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

271
  template <typename T>
W
wangliu 已提交
272
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
273
                        const Scope &scope) {
W
wangliu 已提交
274 275
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
276 277 278 279 280 281
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
282
    }
283
  }
朔-望's avatar
朔-望 已提交
284

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

305
  template <typename T>
W
wangliu 已提交
306 307 308
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
309 310
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
311
    vector<T *> var_res;
312 313 314
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
315
    }
316 317
    return var_res;
  }
朔-望's avatar
朔-望 已提交
318 319
};

N
nhzlx 已提交
320
template <typename Dtype>
321
class ConvParam : public OpParam {
N
nhzlx 已提交
322 323 324
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
325
 public:
326
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
327
            const AttributeMap &attrs, const Scope &scope) {
328 329 330 331 332 333 334 335 336
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
337
  }
朔-望's avatar
朔-望 已提交
338

N
nhzlx 已提交
339
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
340

N
nhzlx 已提交
341
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
342

N
nhzlx 已提交
343
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
344

W
wangliu 已提交
345
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
346

W
wangliu 已提交
347
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
348

W
wangliu 已提交
349
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
350

351
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
352

朔-望's avatar
朔-望 已提交
353
 private:
N
nhzlx 已提交
354 355 356
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
357 358 359
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
360
  int groups;
朔-望's avatar
朔-望 已提交
361
};
N
nhzlx 已提交
362 363
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
364

N
nhzlx 已提交
365
template <typename Dtype>
朔-望's avatar
朔-望 已提交
366
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
367 368 369
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
370
 public:
371
  ElementwiseAddParam(const VariableNameMap &inputs,
372 373
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
374 375 376
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
377 378 379
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
380
  const GType *InputX() const { return input_x_; }
381

xiebaiyuan's avatar
xiebaiyuan 已提交
382
  const GType *InputY() const { return input_y_; }
383

xiebaiyuan's avatar
xiebaiyuan 已提交
384
  GType *Out() const { return out_; }
385 386 387

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
388
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
389 390 391
  GType *input_x_;
  GType *input_y_;
  GType *out_;
392
  int axis_;
Z
zhangyang 已提交
393 394 395
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
396
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
397 398

 public:
H
hanbuhe 已提交
399 400
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
401
#endif
朔-望's avatar
朔-望 已提交
402 403
};

404
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
405 406
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
407 408 409
#endif

#ifdef MUL_OP
N
nhzlx 已提交
410
template <typename Dtype>
朔-望's avatar
朔-望 已提交
411
class MulParam : OpParam {
N
nhzlx 已提交
412 413 414
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
415
 public:
416
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
417
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
418 419 420
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
421 422 423
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
424

xiebaiyuan's avatar
xiebaiyuan 已提交
425
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
426

xiebaiyuan's avatar
xiebaiyuan 已提交
427
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
428

xiebaiyuan's avatar
xiebaiyuan 已提交
429
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
430

431
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
432

433
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
434

朔-望's avatar
朔-望 已提交
435
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
436 437 438
  GType *input_x_;
  GType *input_y_;
  GType *out_;
439 440
  int x_num_col_dims_;
  int y_num_col_dims_;
Z
zhangyang 已提交
441 442 443 444 445 446 447 448 449
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::WrapperConvArgs fpga_conv_args;

 public:
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
450
};
L
liuruilong 已提交
451
#endif
朔-望's avatar
朔-望 已提交
452

L
liuruilong 已提交
453
#ifdef CONCAT_OP
N
nhzlx 已提交
454
template <typename Dtype>
朔-望's avatar
朔-望 已提交
455
class ConcatParam : public OpParam {
N
nhzlx 已提交
456 457 458
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
459
 public:
460
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
461
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
462 463
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
464 465
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
466

N
nhzlx 已提交
467
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
468

xiebaiyuan's avatar
xiebaiyuan 已提交
469
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
470

471
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
472

朔-望's avatar
朔-望 已提交
473
 private:
N
nhzlx 已提交
474
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
475
  GType *out_;
476
  int axis_;
Z
zhangyang 已提交
477 478 479 480 481 482 483 484 485
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
486
};
L
liuruilong 已提交
487
#endif
朔-望's avatar
朔-望 已提交
488

L
liuruilong 已提交
489
#ifdef LRN_OP
N
nhzlx 已提交
490
template <typename Dtype>
E
eclipsess 已提交
491
class LrnParam : public OpParam {
N
nhzlx 已提交
492 493 494
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
495
 public:
496
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
497
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
498 499 500
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
501 502 503 504
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
505
    data_format_ = GetAttr<string>("data_format", attrs);
506
  }
E
eclipsess 已提交
507

N
nhzlx 已提交
508
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
509

N
nhzlx 已提交
510
  RType *Out() const { return out_; }
E
eclipsess 已提交
511

N
nhzlx 已提交
512
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
513

514
  const int &N() const { return n_; }
E
eclipsess 已提交
515

516
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
517

518
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
519

520
  const float &K() const { return k_; }
E
eclipsess 已提交
521

W
wangliu 已提交
522
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
523

朔-望's avatar
朔-望 已提交
524
 private:
N
nhzlx 已提交
525 526 527
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
528 529 530 531
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
532
  string data_format_;
E
eclipsess 已提交
533
};
L
liuruilong 已提交
534 535 536
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
537
template <typename Dtype>
E
eclipsess 已提交
538
class BatchNormParam : OpParam {
N
nhzlx 已提交
539 540 541
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
542
 public:
543
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
544
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
545 546 547 548 549 550
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
551 552
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
553
    //    is_test_ = GetAttr<bool>("is_test", attrs);
554
  }
E
eclipsess 已提交
555

N
nhzlx 已提交
556
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
557

N
nhzlx 已提交
558
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
559

N
nhzlx 已提交
560
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
561

N
nhzlx 已提交
562
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
563

N
nhzlx 已提交
564
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
565

N
nhzlx 已提交
566
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
567

568
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
569

570
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
571

572
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
573

W
wangliu 已提交
574
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
575

朔-望's avatar
朔-望 已提交
576
 private:
N
nhzlx 已提交
577 578 579 580 581 582
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
583 584 585
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
586
  string data_format_;
E
eclipsess 已提交
587
};
L
liuruilong 已提交
588 589 590
#endif

#ifdef POOL_OP
N
nhzlx 已提交
591
template <typename Dtype>
592
class PoolParam : public OpParam {
N
nhzlx 已提交
593 594 595
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
596
 public:
597
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
598
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
599
    input_ = InputXFrom<GType>(inputs, scope);
600

N
nhzlx 已提交
601
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
602 603 604 605
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
606
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
607
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
608
  }
609

N
nhzlx 已提交
610
  const RType *Input() const { return input_; }
611

N
nhzlx 已提交
612
  RType *Output() const { return output_; }
613

W
wangliu 已提交
614
  const string &PoolingType() const { return pooling_type_; }
615

W
wangliu 已提交
616
  const vector<int> &Ksize() const { return ksize_; }
617

W
wangliu 已提交
618
  const vector<int> &Strides() const { return strides_; }
619

W
wangliu 已提交
620
  const vector<int> &Paddings() const { return paddings_; }
621

622
  bool isCeilMode() const { return ceil_mode_; }
623

Z
zhangyang 已提交
624
  bool isGlobalPooling() const { return global_pooling_; }
625

朔-望's avatar
朔-望 已提交
626
 private:
N
nhzlx 已提交
627 628
  RType *input_;
  RType *output_;
W
wangliu 已提交
629 630 631 632
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
633
  bool ceil_mode_;
634
  bool global_pooling_ = false;
Z
zhangyang 已提交
635
#ifdef PADDLE_MOBILE_FPGA
636 637

 private:
H
hanbuhe 已提交
638
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
639 640

 public:
H
hanbuhe 已提交
641 642
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
643
#endif
644
};
L
liuruilong 已提交
645 646 647
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
648
template <typename Dtype>
E
eclipsess 已提交
649
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
650 651 652
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
653 654
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
655
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
656 657 658 659
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
660 661 662 663
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
664 665 666 667 668

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
669 670 671 672 673 674
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
675
  const RType *Input() const { return input_; }
E
eclipsess 已提交
676

N
nhzlx 已提交
677
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
678

N
nhzlx 已提交
679
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
680

N
nhzlx 已提交
681
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
682

W
wangliu 已提交
683
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
684

W
wangliu 已提交
685
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
686

W
wangliu 已提交
687
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
688

W
wangliu 已提交
689
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
690 691 692 693 694 695 696 697 698 699 700

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

701 702 703 704
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
705
 private:
N
nhzlx 已提交
706 707 708 709
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
710 711 712 713
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
714 715 716 717 718
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
719
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
720
};
L
liuruilong 已提交
721
#endif
E
eclipsess 已提交
722

L
liuruilong 已提交
723
#ifdef BOXCODER_OP
N
nhzlx 已提交
724
template <typename Dtype>
E
eclipsess 已提交
725
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
726 727 728
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
729 730
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
731
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
732 733 734 735
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
736 737
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
738
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
739

N
nhzlx 已提交
740
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
741

N
nhzlx 已提交
742
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
743

N
nhzlx 已提交
744
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
745 746 747 748

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
749 750 751 752
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
753 754
  std::string code_type_;
};
L
liuruilong 已提交
755
#endif
W
wangliu 已提交
756

L
liuruilong 已提交
757
#ifdef SOFTMAX_OP
N
nhzlx 已提交
758
template <typename Dtype>
W
wangliu 已提交
759
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
760 761 762
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
763 764
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
765
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
766 767
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
768
  }
N
nhzlx 已提交
769 770
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
771 772

 private:
N
nhzlx 已提交
773 774
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
775 776 777 778

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
779
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
780 781 782
  fpga::BypassArgs fpga_bypass_args;

 public:
783
  RType *FloatInput() const {
H
hanbuhe 已提交
784 785 786 787 788 789
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
790
};
L
liuruilong 已提交
791
#endif
W
wangliu 已提交
792

L
liuruilong 已提交
793
#ifdef SIGMOID_OP
N
nhzlx 已提交
794
template <typename Dtype>
W
wangliu 已提交
795
class SigmoidParam : public OpParam {
N
nhzlx 已提交
796 797 798
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
799 800
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
801
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
802 803
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
804
  }
N
nhzlx 已提交
805 806
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
807 808

 private:
N
nhzlx 已提交
809 810
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
811
};
L
liuruilong 已提交
812 813 814
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
815
template <typename Dtype>
E
eclipsess 已提交
816
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
817 818 819
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
820 821 822 823
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
824 825 826
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
827 828 829 830 831 832 833 834
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
835
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
836

N
nhzlx 已提交
837
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
838

N
nhzlx 已提交
839
  RType *Out() const { return out_; }
E
eclipsess 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
854 855 856
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
857 858 859 860 861 862 863
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
864
#endif
W
wangliu 已提交
865

N
nhzlx 已提交
866
template <typename Dtype>
L
liuruilong 已提交
867
class FeedParam : public OpParam {
N
nhzlx 已提交
868 869 870
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
871 872
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
873
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
874 875
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
876
    auto var = scope->Var("batch_size");
W
wangliu 已提交
877
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
878
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
879 880
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
881
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
882

L
liuruilong 已提交
883
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
884 885
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
886
  int batch_size;
L
liuruilong 已提交
887 888
};

N
nhzlx 已提交
889
template <typename Dtype>
L
liuruilong 已提交
890
class FetchParam : public OpParam {
N
nhzlx 已提交
891 892 893
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
894 895
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
896
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
897 898
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
899
  }
N
nhzlx 已提交
900 901
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
902

L
liuruilong 已提交
903
 private:
N
nhzlx 已提交
904 905
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
906 907
};

L
liuruilong 已提交
908
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
909
template <typename Dtype>
E
eclipsess 已提交
910
class TransposeParam : public OpParam {
N
nhzlx 已提交
911 912 913
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
914 915 916
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
917 918
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
919 920 921
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
922
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
923

N
nhzlx 已提交
924
  RType *Out() const { return out_; }
E
eclipsess 已提交
925 926 927 928

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
929 930
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
931 932
  vector<int> axis_;
};
L
liuruilong 已提交
933
#endif
E
eclipsess 已提交
934

xiebaiyuan's avatar
xiebaiyuan 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1001
#ifdef RESHAPE_OP
N
nhzlx 已提交
1002
template <typename Dtype>
E
eclipsess 已提交
1003
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1004 1005 1006
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1007 1008 1009
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1010 1011 1012
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1013
    shape_ = GetAttr<vector<int>>("shape", attrs);
1014 1015 1016 1017 1018 1019 1020

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1021 1022
  }

N
nhzlx 已提交
1023
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1024

N
nhzlx 已提交
1025
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1026

N
nhzlx 已提交
1027
  RType *Out() const { return out_; }
E
eclipsess 已提交
1028 1029 1030 1031 1032 1033

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1034 1035 1036
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1037 1038 1039
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1040
#endif
E
eclipsess 已提交
1041

T
Tian 已提交
1042
#ifdef SCALE_OP
N
nhzlx 已提交
1043
template <typename Dtype>
I
itminner 已提交
1044
class ScaleParam : public OpParam {
N
nhzlx 已提交
1045 1046 1047
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1048 1049 1050
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1051 1052 1053
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1054 1055 1056 1057 1058 1059
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1060
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1061

N
nhzlx 已提交
1062
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1063

N
nhzlx 已提交
1064
  RType *Out() const { return out_; }
I
itminner 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1075 1076 1077
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1078 1079 1080 1081 1082
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1083 1084 1085
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1086
template <typename Dtype>
I
itminner 已提交
1087
class SliceParam : public OpParam {
N
nhzlx 已提交
1088 1089 1090
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1091 1092 1093
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1094 1095 1096
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1097 1098 1099 1100 1101
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1102
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1103

N
nhzlx 已提交
1104
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1105

N
nhzlx 已提交
1106
  RType *Out() const { return out_; }
I
itminner 已提交
1107 1108 1109 1110 1111 1112 1113 1114

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1115 1116 1117
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1118 1119 1120 1121
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1122 1123 1124
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1125
template <typename Dtype>
T
Tian 已提交
1126
class ResizeParam : public OpParam {
N
nhzlx 已提交
1127 1128 1129
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1130 1131 1132
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1133 1134 1135
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1136 1137 1138 1139 1140 1141
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1142

N
nhzlx 已提交
1143
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1144

N
nhzlx 已提交
1145
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1146

N
nhzlx 已提交
1147
  RType *Out() const { return out_; }
T
Tian 已提交
1148

I
itminner 已提交
1149
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1150

I
itminner 已提交
1151
  const int &Height() const { return height_; }
T
Tian 已提交
1152

I
itminner 已提交
1153
  const int &Width() const { return width_; }
T
Tian 已提交
1154

I
itminner 已提交
1155
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1156

I
itminner 已提交
1157
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1158

I
itminner 已提交
1159
 private:
N
nhzlx 已提交
1160 1161 1162
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1163 1164 1165 1166 1167
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1168 1169 1170
};
#endif

L
liuruilong 已提交
1171
#ifdef RELU_OP
L
liuruilong 已提交
1172 1173 1174
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1175
template <typename Dtype>
E
eclipsess 已提交
1176
class ReluParam : public OpParam {
N
nhzlx 已提交
1177 1178 1179
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1180 1181 1182
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1183 1184
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1185 1186
  }

N
nhzlx 已提交
1187
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1188

N
nhzlx 已提交
1189
  RType *Out() const { return out_; }
E
eclipsess 已提交
1190 1191

 private:
N
nhzlx 已提交
1192 1193
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1194
};
L
liuruilong 已提交
1195
#endif
E
eclipsess 已提交
1196

T
Tian 已提交
1197
#ifdef PRELU_OP
N
nhzlx 已提交
1198
template <typename Dtype>
T
Tian 已提交
1199
class PReluParam : public OpParam {
N
nhzlx 已提交
1200 1201 1202
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1203 1204 1205
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1206
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1207
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1208
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1209
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1210
    out_ = OutFrom<GType>(outputs, scope);
1211 1212
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1213
  }
N
nhzlx 已提交
1214
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1215
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1216
  RType *Out() const { return out_; }
1217
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1218

I
itminner 已提交
1219
 private:
N
nhzlx 已提交
1220 1221
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1222
  RType *alpha_;
1223
  std::string mode_;
T
Tian 已提交
1224 1225 1226
};
#endif

N
nhzlx 已提交
1227
template <typename Dtype>
L
liuruilong 已提交
1228
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1229 1230 1231
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1232
 public:
L
liuruilong 已提交
1233
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1234
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1235 1236 1237 1238
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1239 1240 1241 1242
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1243
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1244

N
nhzlx 已提交
1245
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1246

N
nhzlx 已提交
1247
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1248

xiebaiyuan's avatar
xiebaiyuan 已提交
1249
  GType *Out() const { return out_; }
E
eclipsess 已提交
1250 1251 1252 1253 1254 1255 1256 1257

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1258
  GType *input_x_;
N
nhzlx 已提交
1259 1260
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1261
  GType *out_;
E
eclipsess 已提交
1262 1263 1264
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1265 1266 1267
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1268
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1269 1270

 public:
Z
zhangyang 已提交
1271 1272
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1273
#endif
E
eclipsess 已提交
1274
};
1275 1276

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1277 1278
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1279
#endif
E
eclipsess 已提交
1280

N
nhzlx 已提交
1281
template <typename Dtype>
1282
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1283 1284 1285
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1286
 public:
L
liuruilong 已提交
1287
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1288
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1289 1290 1291 1292 1293
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1294
  }
N
nhzlx 已提交
1295
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1296 1297 1298

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1299
  RType *Output() const { return output_; }
W
wangliu 已提交
1300

L
liuruilong 已提交
1301
 protected:
N
nhzlx 已提交
1302
  RType *bias_;
W
wangliu 已提交
1303
  int axis_;
N
nhzlx 已提交
1304
  RType *output_;
Z
zhangyang 已提交
1305 1306 1307
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1308
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1309 1310

 public:
Z
zhangyang 已提交
1311 1312
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1313
#endif
W
wangliu 已提交
1314 1315
};

N
nhzlx 已提交
1316 1317
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1318

Z
zhangyang 已提交
1319
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1320 1321
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1322
 public:
L
liuruilong 已提交
1323
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1324 1325
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1326
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1327 1328 1329
};
#endif

1330
#ifdef FUSION_CONVADDPRELU_OP
1331 1332 1333 1334
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1335 1336 1337 1338

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1339 1340 1341 1342
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1343
    framework::DDim dims = alpha_->dims();
1344 1345 1346
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1363
  fpga::WrapperConvArgs fpga_conv_args;
1364 1365

 public:
Z
zhangyang 已提交
1366 1367
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1368 1369 1370 1371 1372
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1373 1374 1375 1376
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1377 1378 1379 1380

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1381 1382 1383 1384 1385
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1386
    framework::DDim dims = alpha_->dims();
1387 1388 1389 1390 1391 1392
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1393
    if (keyX1_ == keyOutput_) {
1394
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1395
    } else if (keyY1_ == keyOutput_) {
1396
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1421
  fpga::WrapperConvArgs fpga_conv_args;
1422 1423

 public:
Z
zhangyang 已提交
1424 1425
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1426 1427 1428 1429
#endif
};
#endif

E
eclipsess 已提交
1430
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1431
template <typename Dtype>
1432
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1433 1434 1435
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1436 1437 1438
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1451
  }
N
nhzlx 已提交
1452
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1453 1454 1455

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1456
  RType *Output() const { return output_; }
E
eclipsess 已提交
1457

N
nhzlx 已提交
1458
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1459

N
nhzlx 已提交
1460
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1461

N
nhzlx 已提交
1462
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1463

N
nhzlx 已提交
1464
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1465 1466 1467 1468 1469 1470 1471

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1472
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1473

N
nhzlx 已提交
1474
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1475

N
nhzlx 已提交
1476
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1477

N
nhzlx 已提交
1478
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1479 1480

 protected:
N
nhzlx 已提交
1481
  RType *bias_;
E
eclipsess 已提交
1482
  int axis_;
N
nhzlx 已提交
1483 1484 1485 1486 1487
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1488 1489 1490
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1491 1492
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1493 1494 1495
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1496
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1497 1498

 public:
Z
zhangyang 已提交
1499 1500
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1501 1502 1503 1504 1505 1506
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1507
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1508 1509 1510 1511 1512 1513
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1528
    if (keyX_ == keyBNY_) {
1529
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1530
    } else if (keyY_ == keyBNY_) {
1531
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1532
    }
1533
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1582
  fpga::WrapperConvArgs fpga_conv_args;
1583 1584

 public:
Z
zhangyang 已提交
1585 1586
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1587
#endif
E
eclipsess 已提交
1588
};
1589
#endif
E
eclipsess 已提交
1590

Z
zhangyang 已提交
1591
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1592
template <typename Dtype>
1593
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1594 1595 1596
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1597 1598 1599
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1610
  }
N
nhzlx 已提交
1611
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1612

N
nhzlx 已提交
1613
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1614

N
nhzlx 已提交
1615
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1616

N
nhzlx 已提交
1617
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1618

N
nhzlx 已提交
1619
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1620 1621 1622 1623 1624 1625 1626

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1627
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1628

N
nhzlx 已提交
1629
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1630

N
nhzlx 已提交
1631
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1632

N
nhzlx 已提交
1633
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1634 1635

 protected:
N
nhzlx 已提交
1636 1637 1638 1639 1640
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1641 1642 1643
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1644 1645
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1646 1647 1648
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1649
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1650 1651

 public:
Z
zhangyang 已提交
1652 1653
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1654 1655 1656 1657
#endif
};
#endif

1658
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1659
template <typename Dtype>
1660
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1661 1662 1663
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1664 1665 1666
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1679
  }
N
nhzlx 已提交
1680
  RType *Bias() const { return bias_; }
1681 1682 1683

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1684
  RType *Output() const { return output_y_; }
1685

N
nhzlx 已提交
1686
  const RType *InputBias() const { return input_bias_; }
1687

N
nhzlx 已提交
1688
  const RType *InputMean() const { return input_mean_; }
1689

N
nhzlx 已提交
1690
  const RType *InputScale() const { return input_scale_; }
1691

N
nhzlx 已提交
1692
  const RType *InputVariance() const { return input_variance_; }
1693 1694 1695 1696 1697 1698 1699

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1700
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1701

N
nhzlx 已提交
1702
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1703

N
nhzlx 已提交
1704
  const RType *NewScale() const { return new_scale_; }
1705

N
nhzlx 已提交
1706
  const RType *NewBias() const { return new_bias_; }
1707 1708

 protected:
N
nhzlx 已提交
1709
  RType *bias_;
1710
  int axis_;
N
nhzlx 已提交
1711 1712 1713 1714 1715
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1716 1717 1718
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1719 1720
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1721 1722 1723
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1724
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1725 1726

 public:
Z
zhangyang 已提交
1727 1728
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1729
#endif
1730
};
E
eclipsess 已提交
1731
#endif
Y
Yao,kun 已提交
1732

E
eclipsess 已提交
1733
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1734
template <typename Dtype>
1735
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1736 1737 1738
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1739 1740 1741
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1752
  }
N
nhzlx 已提交
1753
  RType *Output() const { return output_; }
E
eclipsess 已提交
1754

N
nhzlx 已提交
1755
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1756

N
nhzlx 已提交
1757
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1758

N
nhzlx 已提交
1759
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1760

N
nhzlx 已提交
1761
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1762 1763 1764 1765 1766 1767 1768

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1769
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1770

N
nhzlx 已提交
1771
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1772

N
nhzlx 已提交
1773
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1774

N
nhzlx 已提交
1775
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1776 1777

 protected:
N
nhzlx 已提交
1778 1779 1780 1781 1782
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1783 1784 1785
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1786 1787
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1788 1789 1790 1791
};

#endif

1792
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1793
template <typename Dtype>
1794
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1795 1796 1797
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1798 1799 1800
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1811
  }
N
nhzlx 已提交
1812
  RType *Output() const { return output_; }
1813

N
nhzlx 已提交
1814
  const RType *InputBias() const { return input_bias_; }
1815

N
nhzlx 已提交
1816
  const RType *InputMean() const { return input_mean_; }
1817

N
nhzlx 已提交
1818
  const RType *InputScale() const { return input_scale_; }
1819

N
nhzlx 已提交
1820
  const RType *InputVariance() const { return input_variance_; }
1821 1822 1823 1824 1825 1826 1827

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1828
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1829

N
nhzlx 已提交
1830
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1831

N
nhzlx 已提交
1832
  const RType *NewScale() const { return new_scale_; }
1833

N
nhzlx 已提交
1834
  const RType *NewBias() const { return new_bias_; }
1835 1836

 protected:
N
nhzlx 已提交
1837 1838 1839 1840 1841
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1842 1843 1844
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1845 1846
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1847 1848 1849
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1850
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1851 1852

 public:
Z
zhangyang 已提交
1853 1854
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1855
#endif
1856 1857 1858
};
#endif

Y
Yao,kun 已提交
1859
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1860
template <typename Dtype>
Y
Yao,kun 已提交
1861
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1862 1863 1864
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1865 1866 1867 1868
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1869 1870
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1871 1872 1873 1874 1875
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1876
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1877

N
nhzlx 已提交
1878
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1879 1880 1881 1882 1883 1884 1885 1886

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1887 1888
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1889 1890 1891 1892
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1893
#endif
Y
Yao,kun 已提交
1894

1895
#ifdef DROPOUT_OP
N
nhzlx 已提交
1896
template <typename Dtype>
Y
Yao,kun 已提交
1897
class DropoutParam : public OpParam {
N
nhzlx 已提交
1898 1899 1900
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1901 1902 1903
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1904 1905
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
1906 1907

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
1908 1909
  }

N
nhzlx 已提交
1910
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
1911

N
nhzlx 已提交
1912
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
1913

Y
yangfei 已提交
1914 1915
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
1916
 private:
N
nhzlx 已提交
1917 1918
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
1919
  float dropout_prob_;
Y
Yao,kun 已提交
1920
};
1921
#endif
Y
Yao,kun 已提交
1922

H
hjchen2 已提交
1923
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
1924
template <typename Dtype>
L
liuruilong 已提交
1925
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
1926 1927 1928
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1929 1930 1931 1932
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1933 1934 1935
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
1936 1937 1938 1939 1940 1941
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
1942
  const RType *Input() const { return input_; }
L
liuruilong 已提交
1943

N
nhzlx 已提交
1944
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
1945

N
nhzlx 已提交
1946
  RType *Output() const { return output_; }
L
liuruilong 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
1957 1958 1959
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
1960 1961 1962 1963 1964 1965 1966
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2038
    axis = GetAttr<int>("axis", attrs);
2039 2040 2041
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2042
  const int &Axis() const { return axis; }
2043 2044 2045 2046

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2047
  int axis;
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2061
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2062
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2063 2064 2065 2066 2067 2068
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2069 2070
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2071 2072 2073 2074 2075
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2076 2077 2078

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2079
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2080
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2081 2082 2083
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2100 2101
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2102 2103
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2104
  const RType *InputOutPutSize() const { return input_outsize_; }
2105
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2106 2107
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2108 2109 2110 2111 2112

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2113 2114
  int out_h_;
  int out_w_;
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2130
  const RType *Input() const { return input_; }
2131 2132 2133 2134 2135 2136 2137 2138
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2139
template <typename Dtype>
2140 2141 2142 2143 2144
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2145 2146
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    if (HasAttr("is_static", attrs)) {
      is_static_ = GetAttr<bool>("is_static", attrs);
    }
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
  RoundType round_type_ = ROUND_NEAREST_TO_EVEN;
};

2181
template <typename Dtype>
2182 2183 2184 2185 2186
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2187 2188
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};

朔-望's avatar
朔-望 已提交
2209 2210
}  // namespace operators
}  // namespace paddle_mobile