executor.cpp 16.7 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "io/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
29
#include "operators/math/gemm.h"
W
wangliu 已提交
30 31

namespace paddle_mobile {
32

W
wangliu 已提交
33 34 35
using framework::Variable;

template <typename Dtype, Precision P>
36
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p,
37 38
                             const bool use_optimize, const bool loddable)
    : program_(p), use_optimize_(use_optimize), loddable_(loddable) {
W
wangliu 已提交
39
  Variable *variable_ptr = program_.scope->Var("batch_size");
40
  variable_ptr->SetValue<int>(1);
Refine  
陈后江 已提交
41 42
  to_predict_program_ =
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
43 44
  PADDLE_MOBILE_ENFORCE(to_predict_program_ != nullptr,
                        "to_predict_program_ == NULL!");
45
  const std::vector<std::shared_ptr<framework::BlockDesc>> &blocks =
W
wangliu 已提交
46
      to_predict_program_->Blocks();
47 48

  DLOG << "executor in loaddable mode: " << loddable_;
W
wangliu 已提交
49 50 51 52 53
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
54
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
55 56 57
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
Refine  
陈后江 已提交
58 59
      // infer shape to reshape tensor before predict,
      // but for lod tensor, it will need to reshape in runtime
xiebaiyuan's avatar
xiebaiyuan 已提交
60 61 62
      if (!loddable_) {
        op_base->InferShape();
      }
W
wangliu 已提交
63 64 65
      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
W
wangliu 已提交
66
  if (program_.combined) {
L
liuruilong 已提交
67 68 69 70
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
71
  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
72
      to_predict_program_->Block(0);
L
liuruilong 已提交
73
  auto &ops = ops_of_block_[*to_predict_block.get()];
L
liuruilong 已提交
74
  for (const auto &op : ops) {
L
liuruilong 已提交
75 76
    op->Init();
  }
W
wangliu 已提交
77 78
}

79
template <typename Dtype>
Refine  
陈后江 已提交
80 81
void LoadMemInternal(void **data, framework::LoDTensor *tensor) {
  char **data_buf = reinterpret_cast<char **>(data);
82
  int64_t size = tensor->numel();
83
  Dtype *tensor_data = tensor->mutable_data<Dtype>();
84
  if (0) {
85
    // TODO(hjchen2) should be moved into operator init function
86 87 88 89 90 91
    float min_value;
    float max_value;
    memcpy(&min_value, data_buf, sizeof(float));
    memcpy(&max_value, data_buf + sizeof(float), sizeof(float));
    data_buf += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
92
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(data_buf);
93 94
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
95
    }
96 97
    data_buf += size * sizeof(uint8_t);
  } else {
Refine  
陈后江 已提交
98 99
    memcpy(tensor_data, *data_buf, size * sizeof(Dtype));
    *data_buf += size * sizeof(Dtype);
L
liuruilong 已提交
100
  }
101
}
W
wangliu 已提交
102

103
template <typename Dtype, Precision P>
Refine  
陈后江 已提交
104
void Executor<Dtype, P>::LoadMemory(
105 106 107
    void **data, const std::shared_ptr<framework::VarDesc> var_desc,
    framework::LoDTensor *tensor) {
  char **data_buf = reinterpret_cast<char **>(data);
108
  // version
109
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
110
  *data_buf += sizeof(uint32_t);
111
  // lod information
112
  uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
113
  *data_buf += sizeof(uint64_t);
114 115 116 117

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
118
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
119
    *data_buf += sizeof(uint64_t);
120
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Refine  
陈后江 已提交
121
    memcpy(tmp_dim.data(), *data_buf, size);
122
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
123
    *data_buf += size;
W
wangliu 已提交
124
  }
125
  // tensor version
126
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
127
  *data_buf += sizeof(uint32_t);
128
  // tensor desc size
129
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
130
  *data_buf += sizeof(int32_t);
131
  // skip tensor desc
Refine  
陈后江 已提交
132
  *data_buf += tensor_desc_size;
133

Refine  
陈后江 已提交
134
  const framework::TensorDesc &tensor_desc = var_desc->Tensor_desc();
135 136 137
  tensor->Resize(framework::make_ddim(tensor_desc.Dims()));
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
W
wangliu 已提交
138
    case framework::VARTYPE_TYPE_FP32:
139
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
140
      break;
141
    case framework::VARTYPE_TYPE_INT8:
142
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
143 144
      break;
    case framework::VARTYPE_TYPE_INT32:
145
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
146 147
      break;
    default:
148
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
149
  }
W
wangliu 已提交
150 151 152 153 154 155 156
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
157
      auto tensor = var->template GetMutable<framework::LoDTensor>();
W
wangliu 已提交
158 159 160 161
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
Refine  
陈后江 已提交
162
        char *origin_data =
Refine  
陈后江 已提交
163
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
164
        char *data = origin_data;
165 166
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
167 168
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
169
          varInputMemory(var_desc, var, tensor);
W
wangliu 已提交
170 171 172 173 174 175
        }
      }
    }
  }
}

L
liuruilong 已提交
176
template <typename Dtype, Precision P>
L
liuruilong 已提交
177
void Executor<Dtype, P>::InitCombineMemory() {
Refine  
陈后江 已提交
178
  char *origin_data = nullptr;
Refine  
陈后江 已提交
179
  bool self_alloc = false;
180
  if (program_.combined_params_buf && program_.combined_params_len) {
181 182
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
183
  } else {
Refine  
陈后江 已提交
184
    self_alloc = true;
Refine  
陈后江 已提交
185
    origin_data = ReadFileToBuff(program_.para_path);
186
  }
Refine  
陈后江 已提交
187 188
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
L
liuruilong 已提交
189 190 191
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
192
      auto tensor = var->template GetMutable<framework::LoDTensor>();
L
liuruilong 已提交
193 194 195 196
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
197
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
198 199
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
200
          varInputMemory(var_desc, var, tensor);
L
liuruilong 已提交
201 202 203 204
        }
      }
    }
  }
Refine  
陈后江 已提交
205
  if (self_alloc) {
206
    delete[] origin_data;
Refine  
陈后江 已提交
207 208
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
209
}
210

xiebaiyuan's avatar
xiebaiyuan 已提交
211 212 213 214
template <typename Dtype, Precision P>
bool Executor<Dtype, P>::varInputMemory(
    const std::shared_ptr<framework::VarDesc> &var_desc, Variable *var,
    framework::LoDTensor *tensor) const {
215 216
  auto type = var_desc->Tensor_desc().DataType();
  switch (type) {
Refine  
陈后江 已提交
217
    case framework::VARTYPE_TYPE_FP32:
218
      tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
219
      break;
Refine  
陈后江 已提交
220
    case framework::VARTYPE_TYPE_INT8:
221
      tensor->mutable_data<int8_t>();
Refine  
陈后江 已提交
222 223
      break;
    case framework::VARTYPE_TYPE_INT32:
224
      tensor->mutable_data<int32_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
225
      break;
Refine  
陈后江 已提交
226
    case framework::VARTYPE_TYPE_INT64:
227
      tensor->mutable_data<int64_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
228
      break;
Refine  
陈后江 已提交
229
    default:
xiebaiyuan's avatar
xiebaiyuan 已提交
230 231
      break;
  }
Refine  
陈后江 已提交
232
  bool is_mute_match = (type == framework::VARTYPE_TYPE_FP32) ||
233 234 235
                       (type == framework::VARTYPE_TYPE_INT8) ||
                       (type == framework::VARTYPE_TYPE_INT32) ||
                       (type == framework::VARTYPE_TYPE_INT64);
Refine  
陈后江 已提交
236
  PADDLE_MOBILE_ENFORCE(is_mute_match, "got unhandled data type : %d", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
237 238
  return is_mute_match;
}
L
liuruilong 已提交
239

W
wangliu 已提交
240
template <typename Dtype, Precision P>
W
wangliu 已提交
241 242
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
243 244 245 246 247 248
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
249
      to_predict_program_->Block(0);
D
dolphin8 已提交
250
  auto &ops = ops_of_block_[*to_predict_block.get()];
xiebaiyuan's avatar
xiebaiyuan 已提交
251

D
dolphin8 已提交
252
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
253
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
254
#endif
D
dolphin8 已提交
255
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
256
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
257 258 259 260
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
L
liuruilong 已提交
261
    // to Run
D
dolphin8 已提交
262 263 264 265 266
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
267
  }
W
wangliu 已提交
268 269 270 271 272 273 274
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
  }
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
295 296 297
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
298 299 300
  }
  printf("====================[---------]======================\n");
#endif
L
liuruilong 已提交
301
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
302
}
xiebaiyuan's avatar
xiebaiyuan 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

template <typename Dtype, Precision P>
std::shared_ptr<framework::LoDTensor> Executor<Dtype, P>::PredictLod(
    const framework::LoDTensor &t) {
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::LoDTensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  feed_tensor->set_lod(t.lod());

  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);

  auto &ops = ops_of_block_[*to_predict_block.get()];

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = 0; i < ops.size(); i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
    if (loddable_) {
      ops[i]->InferShape();
    }
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
  auto last_op = ops.rbegin();

  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
  }
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
  printf("====================[---------]======================\n");
#endif
  return std::make_shared<framework::LoDTensor>(
      framework::LoDTensor(*output_tensor));
}

W
wangliu 已提交
375 376 377 378
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
379 380 381
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
382
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
383 384
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
385 386 387 388 389 390 391 392
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
393 394
}

395 396
#ifdef PADDLE_MOBILE_FPGA
template <typename Dtype, Precision P>
397 398 399
void Executor<Dtype, P>::InjectVariable(const framework::Tensor &t,
                                        string var_name) {
  framework::Variable *g_feed_value = program_.scope->Var(var_name);
400 401 402 403
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
404
}
405

406 407 408
template <typename Dtype, Precision P>
void Executor<Dtype, P>::FeedData(const framework::Tensor &t) {
  InjectVariable(t, "feed");
409
}
410

411
template <typename Dtype, Precision P>
412
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::FetchResult(int id) {
413 414 415
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
416

Z
zhangyang 已提交
417 418 419 420 421
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
422 423 424
  auto *output_tensor = framework::GetVarValue<framework::LoDTensor>(
      out_keys[0], output_map, *(program_.scope));
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
425
}
426 427 428 429 430 431

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From_To(int start, int end) {
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
432
  end = end < 0 ? static_cast<int>(ops.size()) : end;
433 434 435 436 437 438 439 440 441 442 443 444
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
445
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
446 447 448 449 450 451 452
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
453
}
454 455 456 457

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From(int start) {
  Predict_From_To(start);
458
}
459 460 461 462

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_To(int end) {
  Predict_From_To(0, end);
463
}
464 465
#endif

W
wangliu 已提交
466
template class Executor<CPU, Precision::FP32>;
H
hanbuhe 已提交
467
template class Executor<GPU_MALI, Precision::FP32>;
L
liuruilong 已提交
468
template class Executor<FPGA, Precision::FP32>;
W
wangliu 已提交
469 470

}  // namespace paddle_mobile