pool_op.cc 10.0 KB
Newer Older
H
hong19860320 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/pool_op.h"
#include "lite/kernels/apu/bridges/graph.h"
#include "lite/kernels/apu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace apu {

int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto model = graph->model();
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[APU] Converting [" + op_type + "] ";

35 36 37
  CHECK(op_info->HasAttr("enable_int8") &&
        op_info->GetAttr<bool>("enable_int8"));

H
hong19860320 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
  auto out_name = op_info->Output("Out").front();
  auto out = scope->FindMutableTensor(out_name);
  auto out_dims = out->dims();
  auto pooling_type = op_info->GetAttr<std::string>("pooling_type");
  auto global_pooling = op_info->GetAttr<bool>("global_pooling");
  auto ksize = op_info->GetAttr<std::vector<int>>("ksize");
  auto paddings = op_info->GetAttr<std::vector<int>>("paddings");

  // pool mode
  if ((pooling_type == "max") || (pooling_type == "avg")) {
  } else {
    LOG(WARNING) << "[APU] Unsupported pooling type: " << pooling_type;
    return FAILED;
  }

  // pad mode
  int pad_mode = 0;
  std::string padding_algorithm("");
  if (op_info->HasAttr("padding_algorithm")) {
    padding_algorithm = op_info->GetAttr<std::string>("padding_algorithm");
  }
  if (padding_algorithm == "SAME") {
    pad_mode = 6;
  } else if (padding_algorithm == "VALID") {
    pad_mode = 5;
  }

  // paddings and strides
  if (paddings.size() == 2L) {
    for (size_t i = 0; i < 2L; ++i) {
      int copy_pad = *(paddings.begin() + 2 * i);
      paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
    }
  }
  CHECK_EQ(paddings.size(), 4L)
      << "[APU] Paddings size should be the same or twice as the inputs size.";

  bool adaptive = false;
  if (op_info->HasAttr("adaptive")) {
    adaptive = op_info->GetAttr<bool>("adaptive");
  }
  auto strides = op_info->GetAttr<std::vector<int>>("strides");
  lite::operators::UpdatePadding(&paddings,
                                 global_pooling,
                                 adaptive,
                                 padding_algorithm,
                                 x->dims(),
                                 strides,
                                 ksize);

  // Add x tensor type
93 94 95 96
  CHECK(op_info->HasInputScale(x_name));
  auto x_scale = op_info->GetInputScale(x_name)[0];
  CHECK(op_info->HasOutputScale(out_name));
  auto out_scale = op_info->GetOutputScale(out_name)[0];
H
hong19860320 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

  NeuronOperandType xType;
  xType.type = NEURON_TENSOR_QUANT8_ASYMM;
  xType.scale = x_scale;
  xType.zeroPoint = 128;
  xType.dimensionCount = x_dims.size();
  std::vector<uint32_t> dims_x = {(uint32_t)x_dims[0],
                                  (uint32_t)x_dims[2],
                                  (uint32_t)x_dims[3],
                                  (uint32_t)x_dims[1]};
  xType.dimensions = &dims_x[0];
  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    LOG(INFO) << "Graph has " << x_name;
    // input operand already exist
    x_node = graph->Get(x_name);
  } else {
    // add input operand
115
    NeuronModel_addOperand(model, &xType);  // 0: x
H
hong19860320 已提交
116 117 118 119 120 121 122 123 124 125 126 127
    x_node = graph->Add(x_name, dims_x);
  }
  VLOG(3) << "x_scale: " << x_scale << ", xType: " << xType.dimensions[0] << ":"
          << xType.dimensions[1] << ":" << xType.dimensions[2] << ":"
          << xType.dimensions[3];

  NeuronOperandType int32Type;
  int32Type.type = NEURON_INT32;
  int32Type.dimensionCount = 0;
  std::vector<uint32_t> dims_int32 = {0};

  std::shared_ptr<Node> paddingL_node = nullptr;
128
  NeuronModel_addOperand(model, &int32Type);  // 1: padding left
H
hong19860320 已提交
129 130 131
  paddingL_node = graph->Add(x_name + "_padding_left", dims_int32);

  std::shared_ptr<Node> paddingR_node = nullptr;
132
  NeuronModel_addOperand(model, &int32Type);  // 2: padding right
H
hong19860320 已提交
133 134 135
  paddingR_node = graph->Add(x_name + "_padding_right", dims_int32);

  std::shared_ptr<Node> paddingT_node = nullptr;
136
  NeuronModel_addOperand(model, &int32Type);  // 3: padding top
H
hong19860320 已提交
137 138 139
  paddingT_node = graph->Add(x_name + "_padding_top", dims_int32);

  std::shared_ptr<Node> paddingB_node = nullptr;
140
  NeuronModel_addOperand(model, &int32Type);  // 4: padding bottom
H
hong19860320 已提交
141 142 143
  paddingB_node = graph->Add(x_name + "_padding_bottom", dims_int32);

  std::shared_ptr<Node> strideW_node = nullptr;
144
  NeuronModel_addOperand(model, &int32Type);  // 5: stride width
H
hong19860320 已提交
145 146 147
  strideW_node = graph->Add(x_name + "_stride_width", dims_int32);

  std::shared_ptr<Node> strideH_node = nullptr;
148
  NeuronModel_addOperand(model, &int32Type);  // 6: stride height
H
hong19860320 已提交
149 150 151
  strideH_node = graph->Add(x_name + "_stride_height", dims_int32);

  std::shared_ptr<Node> filterW_node = nullptr;
152
  NeuronModel_addOperand(model, &int32Type);  // 7: filter width
H
hong19860320 已提交
153 154 155
  filterW_node = graph->Add(x_name + "_filter_width", dims_int32);

  std::shared_ptr<Node> filterH_node = nullptr;
156
  NeuronModel_addOperand(model, &int32Type);  // 8: filter height
H
hong19860320 已提交
157 158 159
  filterH_node = graph->Add(x_name + "_filter_height", dims_int32);

  std::shared_ptr<Node> fuse_node = nullptr;
160
  NeuronModel_addOperand(model, &int32Type);  // 9: fuse
H
hong19860320 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  fuse_node = graph->Add(x_name + "_fuse", dims_int32);

  // Add out type
  // Add output tensor type
  NeuronOperandType outType;
  outType.type = NEURON_TENSOR_QUANT8_ASYMM;
  outType.scale = out_scale;
  outType.zeroPoint = 128;
  outType.dimensionCount = out_dims.size();
  std::vector<uint32_t> dims_out = {(uint32_t)out_dims[0],
                                    (uint32_t)out_dims[2],
                                    (uint32_t)out_dims[3],
                                    (uint32_t)out_dims[1]};
  outType.dimensions = &dims_out[0];
  std::shared_ptr<Node> out_node = nullptr;
  if (graph->Has(out_name)) {
    out_node = graph->Get(out_name);
  } else {
179
    NeuronModel_addOperand(model, &outType);  // out
H
hong19860320 已提交
180 181 182 183 184 185 186 187 188 189
    out_node = graph->Add(out_name, dims_out);
  }
  VLOG(3) << "output_scale: " << x_scale
          << ", outType: " << outType.dimensions[0] << ":"
          << outType.dimensions[1] << ":" << outType.dimensions[2] << ":"
          << outType.dimensions[3];

  // Add padding value
  int32_t padding_val[1];
  padding_val[0] = paddings[2];
190
  NeuronModel_setOperandValue(
H
hong19860320 已提交
191 192
      model, paddingL_node->index(), padding_val, sizeof(int32_t) * 1);
  padding_val[0] = paddings[3];
193
  NeuronModel_setOperandValue(
H
hong19860320 已提交
194 195
      model, paddingR_node->index(), padding_val, sizeof(int32_t) * 1);
  padding_val[0] = paddings[0];
196
  NeuronModel_setOperandValue(
H
hong19860320 已提交
197 198
      model, paddingT_node->index(), padding_val, sizeof(int32_t) * 1);
  padding_val[0] = paddings[1];
199
  NeuronModel_setOperandValue(
H
hong19860320 已提交
200 201 202 203 204
      model, paddingB_node->index(), padding_val, sizeof(int32_t) * 1);

  // Add Stride
  int32_t stride_val[1];
  stride_val[0] = strides[1];  // width
205
  NeuronModel_setOperandValue(
H
hong19860320 已提交
206 207
      model, strideW_node->index(), stride_val, sizeof(int32_t) * 1);
  stride_val[0] = strides[0];  // height
208
  NeuronModel_setOperandValue(
H
hong19860320 已提交
209 210 211 212 213
      model, strideH_node->index(), stride_val, sizeof(int32_t) * 1);

  // Add filter
  int32_t filter_val[1];
  filter_val[0] = global_pooling ? x_dims[3] : ksize[1];  // width
214
  NeuronModel_setOperandValue(
H
hong19860320 已提交
215 216
      model, filterW_node->index(), filter_val, sizeof(int32_t) * 1);
  filter_val[0] = global_pooling ? x_dims[2] : ksize[0];  // height
217
  NeuronModel_setOperandValue(
H
hong19860320 已提交
218 219 220 221
      model, filterH_node->index(), filter_val, sizeof(int32_t) * 1);

  // Add fuse
  int32_t fuse_val[1] = {0};
222
  NeuronModel_setOperandValue(
H
hong19860320 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
      model, fuse_node->index(), fuse_val, sizeof(int32_t) * 1);

  std::vector<uint32_t> addInIndex = {x_node->index(),
                                      paddingL_node->index(),
                                      paddingR_node->index(),
                                      paddingT_node->index(),
                                      paddingB_node->index(),
                                      strideW_node->index(),
                                      strideH_node->index(),
                                      filterW_node->index(),
                                      filterH_node->index(),
                                      fuse_node->index()};
  std::vector<uint32_t> addOutIndex = {out_node->index()};

  int neuron_errCode;
  if (pooling_type == "max") {
239 240 241 242 243 244
    neuron_errCode = NeuronModel_addOperation(model,
                                              NEURON_MAX_POOL_2D,
                                              addInIndex.size(),
                                              &addInIndex[0],
                                              addOutIndex.size(),
                                              &addOutIndex[0]);
H
hong19860320 已提交
245
  } else {
246 247 248 249 250 251
    neuron_errCode = NeuronModel_addOperation(model,
                                              NEURON_AVERAGE_POOL_2D,
                                              addInIndex.size(),
                                              &addInIndex[0],
                                              addOutIndex.size(),
                                              &addOutIndex[0]);
H
hong19860320 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264
  }

  return REBUILD_WHEN_SHAPE_CHANGED;
}

}  // namespace apu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(pool2d,
                         kAPU,
                         paddle::lite::subgraph::apu::PoolConverter);