test_quantize_op.cpp 4.8 KB
Newer Older
H
hjchen2 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include <iostream>
H
hjchen2 已提交
16 17 18 19 20
#include "../test_helper.h"
#include "../test_include.h"
#include "operators/quantize_op.h"

namespace paddle_mobile {
H
hjchen2 已提交
21 22 23 24 25 26 27
namespace round {
enum RoundType {
  RoundToEven = 0,
  RoundAwayZero = 1,
  RoundTowardsZero = 2,
};
}
H
hjchen2 已提交
28

H
hjchen2 已提交
29
template <round::RoundType T>
30 31 32
struct Round {
  int8_t operator()(float x);
};
H
hjchen2 已提交
33 34

template <>
35 36 37
struct Round<round::RoundAwayZero> {
  int8_t operator()(float x) { return std::round(x); }
};
H
hjchen2 已提交
38 39

template <>
40 41 42
struct Round<round::RoundTowardsZero> {
  int8_t operator()(float x) { return int8_t(x); }
};
H
hjchen2 已提交
43 44

template <>
45 46 47
struct Round<round::RoundToEven> {
  int8_t operator()(float x) {
    float v = std::round(x);
48 49 50 51
    int32_t q = static_cast<int32_t>(v);
    if (abs(abs(q - v) - 0.5) <= 0) {
      if (abs(q) % 2 != 0) {
        q = q + ((q > 0) ? -1 : 1);
52
      }
H
hjchen2 已提交
53
    }
54
    return static_cast<int8_t>(q);
H
hjchen2 已提交
55
  }
56
};
H
hjchen2 已提交
57

H
hjchen2 已提交
58
template <round::RoundType T>
59
static void quantize(const Tensor *input, const float scale, Tensor *output) {
H
hjchen2 已提交
60 61 62 63 64 65 66 67
  int batch_size = input->dims()[0];
  int channels = input->dims()[1];
  int input_h = input->dims()[2];
  int input_w = input->dims()[3];
  int output_h = output->dims()[2];
  int output_w = output->dims()[3];
  size_t input_spatial = input_h * input_w;
  size_t output_spatial = output_h * output_w;
H
hjchen2 已提交
68 69
  const float *x = input->data<const float>();
  int8_t *y = output->mutable_data<int8_t>();
H
hjchen2 已提交
70 71 72 73 74 75

  for (int nc = 0; nc < batch_size * channels; ++nc) {
    const float *xh = x + nc * input_spatial;
    int8_t *yh = y + nc * output_spatial;
    for (int h = 0; h < input_h; ++h, yh += output_w, xh += input_w) {
      for (int w = 0; w < input_w; ++w) {
76
        yh[w] = Round<T>()(xh[w] * scale);
H
hjchen2 已提交
77 78 79 80 81
      }
    }
  }
}

H
hjchen2 已提交
82 83
static float find_abs_max(const Tensor *input) {
  float max_abs = 0.f;
84 85 86
  const float *x = input->data<const float>();
  size_t size = input->numel();
  for (size_t i = 0; i < size; ++i) {
H
hjchen2 已提交
87 88 89 90
    float value = std::abs(x[i]);
    if (value > max_abs) {
      max_abs = value;
    }
91
  }
H
hjchen2 已提交
92
  return max_abs;
93 94
}

95 96 97 98
int TestQuqntizeOp(const int batch_size, const int channel, const int height,
                   const int width) {
  DLOG << "batch_size: " << batch_size << ", channel: " << channel
       << ", height: " << height << ", width: " << width;
H
hjchen2 已提交
99 100
  framework::DDim dim =
      framework::make_ddim({batch_size, channel, height, width});
H
hjchen2 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

  VariableNameMap inputs;
  VariableNameMap outputs;
  auto scope = std::make_shared<framework::Scope>();
  inputs["X"] = std::vector<std::string>({"input"});
  outputs["Out"] = std::vector<std::string>({"output"});
  outputs["OutScale"] = std::vector<std::string>({"output_scale"});

  auto input_var = scope.get()->Var("input");
  auto input = input_var->template GetMutable<framework::LoDTensor>();
  SetupTensor<float>(input, dim, -100.f, 100.f);

  auto output_var = scope.get()->Var("output");
  auto output_scale_var = scope.get()->Var("output_scale");

  framework::AttributeMap attrs;
  auto *op = new operators::QuantizeOp<CPU, float>("quantize", inputs, outputs,
118
                                                   attrs, scope.get());
H
hjchen2 已提交
119 120 121 122 123 124 125 126
  op->InferShape();
  op->Run();

  auto output = output_var->template Get<framework::LoDTensor>();
  const int8_t *output_data = output->data<int8_t>();
  auto output_scale = output_scale_var->template Get<framework::LoDTensor>();
  const float *output_scale_data = output_scale->data<float>();

127
  float output_scale_cmp = find_abs_max(input);
H
hjchen2 已提交
128 129 130 131 132
  PADDLE_MOBILE_ENFORCE(output_scale_cmp == output_scale_data[0],
                        "output_scale = %.6f, output_scale_cmp = %.6f",
                        output_scale_cmp, output_scale_data[0]);

  framework::Tensor output_cmp;
H
hjchen2 已提交
133
  output_cmp.Resize(output->dims());
134
  float scale = 127 / output_scale_cmp;
135
  quantize<round::RoundAwayZero>(input, scale, &output_cmp);
H
hjchen2 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
  int8_t *output_cmp_data = output_cmp.data<int8_t>();
  for (int i = 0; i < output->numel(); ++i) {
    PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
                          "output[%d] = %d, output_cmp[%d] = %d", i,
                          static_cast<int>(output_data[i]), i,
                          static_cast<int>(output_cmp_data[i]));
  }
  delete op;
  return 0;
}

}  // namespace paddle_mobile

H
hjchen2 已提交
149
int main(int argc, char *argv[]) {
150 151 152
  TestQuqntizeOp(1, 10, 10, 5);
  TestQuqntizeOp(1, 111, 111, 5);
  TestQuqntizeOp(5, 111, 111, 5);
H
hjchen2 已提交
153
}