sigmoid_kernel.cpp 2.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
liuruilong 已提交
15 16
#ifdef SIGMOID_OP

W
wangliu 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "../sigmoid_kernel.h"
#if __ARM_NEON
#include "../../math/math_func_neon.h"
#endif

namespace paddle_mobile {
namespace operators {

using framework::DDim;
using framework::Tensor;

void sigmoid(const Tensor *X, Tensor *Y) {
#if __ARM_NEON
  const float *input = X->data<float>();
  float *output = Y->mutable_data<float>();
  const DDim &dDim = X->dims();
  int axis_index = 1;
  if (dDim.size() < 4) {
    axis_index = 0;
  }
  DDim outer_ddim =
      paddle_mobile::framework::slice_ddim(dDim, 0, axis_index + 1);
  DDim inner_ddim =
      paddle_mobile::framework::slice_ddim(dDim, axis_index + 1, dDim.size());
  int out_size = paddle_mobile::framework::product(outer_ddim);
  int inner_size = paddle_mobile::framework::product(inner_ddim);

  DLOG << "outsize=" << out_size;
  DLOG << "innersize=" << inner_size;
H
Haipeng Wang 已提交
46
  #pragma omp parallel for
W
wangliu 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  for (int i = 0; i < out_size; ++i) {
    const float *input_outer_ptr = input + i * inner_size;
    float *output_outer_ptr = output + i * inner_size;
    int nn = inner_size >> 2;
    int remain = inner_size - (nn << 2);
    float32x4_t _one = vdupq_n_f32(1.f);
    for (; nn > 0; nn--) {
      float32x4_t data = vld1q_f32(input_outer_ptr);
      data = vnegq_f32(data);
      data = exp_ps(data);
      data = vaddq_f32(data, _one);
      float32x4_t out_data = vrecpeq_f32(data);
      out_data = vmulq_f32(vrecpsq_f32(data, out_data), out_data);
      vst1q_f32(output_outer_ptr, out_data);

      input_outer_ptr += 4;
      output_outer_ptr += 4;
    }
    for (; remain > 0; remain--) {
      *output_outer_ptr = 1.f / (1.f + exp(-*input_outer_ptr));
      output_outer_ptr++;
      input_outer_ptr++;
    }
  }
#endif
}

template <>
void SigmoidKernel<CPU, float>::Compute(const SigmoidParam &param) const {
  const Tensor *in_x = param.InputX();
  Tensor *out = param.Out();
  auto x_dims = in_x->dims();
  out->Resize(x_dims);
  sigmoid(in_x, out);
}

template class SigmoidKernel<CPU, float>;
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
86 87

#endif