deconv_add_kernel.cpp 3.9 KB
Newer Older
qnqinan's avatar
qnqinan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_DECONVADD_OP

#include "operators/kernel/deconv_add_kernel.h"
#include "framework/operator.h"
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

template <>
bool DeconvAddKernel<FPGA, float>::Init(FusionDeconvAddParam<FPGA> *param) {
26 27 28 29 30 31 32 33
  paddle_mobile::fpga::ActivationType activation_enable =
      paddle_mobile::fpga::NONE;
  int16_t leaky_relu_negative_slope = 0;
  auto input = const_cast<LoDTensor *>(param->Input());
  const Tensor *bias = param->Bias();
  auto bias_ptr = bias->data<float>();
  auto filter = const_cast<LoDTensor *>(param->Filter());
  auto out = param->Output();
34 35
  float Si = input->scale[0];
  float So = out->scale[0];
36
  float Sf = fpga::filter_find_max(filter) / 127;
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == bias->dims()[0],
                        "Output channel should be equal to bias number");
  int channel = out->dims()[1];

  int sub_conv_n = param->Strides()[0];
  auto bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sub_conv_n *  // NOLINT
                                           sizeof(float));             // NOLINT

  for (int i = 0; i < channel * sub_conv_n; i++) {
    bs_ptr[i + sub_conv_n * channel] = 1;
    bs_ptr[i] = bias_ptr[i % (channel)];
  }

  PADDLE_MOBILE_ENFORCE(param->Strides()[1] == param->Strides()[0],
                        "stride_width should be equal to stride_height ");
  PADDLE_MOBILE_ENFORCE(filter->dims()[2] == filter->dims()[3],
                        "filter width should be equal to filter height ");
  PADDLE_MOBILE_ENFORCE(((filter->dims()[2] % param->Strides()[0]) == 0),
                        "filter axis should be the multiple of stride axis ");
  if (param->Groups() == channel) {
57 58 59 60
    for (int i = 0; i < channel * sub_conv_n; i++) {
      bs_ptr[i + sub_conv_n * channel] = Si / So;
      bs_ptr[i] = bias_ptr[i % (channel)] * 127.0f / So;
    }
61 62 63 64 65 66 67 68 69
    fpga::format_DWDeconv_data(filter, out, &bs_ptr, param->Groups(),
                               sub_conv_n);
    fpga::DWDeconvArgs DWDeconv_arg = {0};
    fpga::fill_DWDeconv_arg(&DWDeconv_arg, input, out, filter,
                            activation_enable, leaky_relu_negative_slope,
                            param->Strides()[0], param->Strides()[1],
                            param->Paddings()[0], param->Paddings()[1], bs_ptr);
    param->SetFpgaArgs(DWDeconv_arg);
  } else {
70 71 72 73
    for (int i = 0; i < channel * sub_conv_n; i++) {
      bs_ptr[i + sub_conv_n * channel] = Si / So * Sf / 127.0f;
      bs_ptr[i] = bias_ptr[i % (channel)] * 127.0f / So;
    }
74 75 76 77 78 79 80 81 82
    fpga::format_deconv_data(filter, out, &bs_ptr, param->Groups(), sub_conv_n);
    fpga::DeconvArgs deconv_arg = {0};
    fpga::fill_deconv_arg(&deconv_arg, input, out, filter, activation_enable,
                          leaky_relu_negative_slope, param->Groups(),
                          param->Strides()[0], param->Strides()[1],
                          param->Paddings()[0], param->Paddings()[1], bs_ptr);
    param->SetFpgaArgs(deconv_arg);
  }

qnqinan's avatar
qnqinan 已提交
83 84 85 86 87
  return true;
}

template <>
void DeconvAddKernel<FPGA, float>::Compute(
88 89 90 91 92 93 94
    const FusionDeconvAddParam<FPGA> &param) {
  if (param.Groups() == param.Output()->dims()[1]) {
    fpga::ComputeDWDeconv(param.FpgaDWDconvArgs());
  } else {
    fpga::ComputeFpgaDeconv(param.FpgaArgs());
  }
}
qnqinan's avatar
qnqinan 已提交
95 96 97 98 99

}  // namespace operators
}  // namespace paddle_mobile

#endif