executor.cpp 30.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
Z
zhangyang 已提交
29
#include "memory/t_malloc.h"
L
update  
liuruilong 已提交
30 31 32 33

#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
34 35

namespace paddle_mobile {
36
namespace framework {
37

W
wangliu 已提交
38 39
#pragma mark - executor

40
template <typename Device, typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
41 42 43 44
Executor<Device, T>::Executor(const Program<Device> &program,
                              paddle_mobile::PaddleMobileConfigInternal config,
                              int batch_size, const bool use_optimize,
                              const bool lod_mode)
45
    : program_(program),
H
hjchen2 已提交
46 47
      batch_size_(batch_size),
      use_optimize_(use_optimize),
xiebaiyuan's avatar
xiebaiyuan 已提交
48 49
      lod_mode_(lod_mode),
      config_(config) {
50 51
  DLOG << "executor in lod mode: " << lod_mode_;

W
wangliu 已提交
52
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
53
  variable_ptr->SetValue<int>(batch_size);
54 55

  program_desc_ =
Refine  
陈后江 已提交
56
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
57 58 59
  PADDLE_MOBILE_ENFORCE(program_desc_ != nullptr,
                        "program_desc_ should not be nullptr");
  const auto &blocks = program_desc_->Blocks();
60 61 62 63 64 65 66 67 68

  std::shared_ptr<BlockDesc> block_desc = blocks[0];
  std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
  for (int j = 0; j < ops.size(); ++j) {
    std::shared_ptr<OpDesc> op_desc = ops[j];
    DLOG << "create op: " << op_desc->Type();

    auto op_handler = OpRegistry<Device>::CreateOp(
        op_desc->Type(), op_desc->GetInputs(), op_desc->GetOutputs(),
69
        op_desc->GetAttrMap(), program_.scope.get());
70 71 72 73
    // infer shape to reshape inputs and outputs before predict,
    // but for lod mode, it still need to infer shape in runtime
    if (!lod_mode) {
      op_handler->InferShape();
W
wangliu 已提交
74
    }
75
    ops_of_block0_.push_back(op_handler);
W
wangliu 已提交
76
  }
W
wangliu 已提交
77
  if (program_.combined) {
L
liuruilong 已提交
78 79 80 81
    InitCombineMemory();
  } else {
    InitMemory();
  }
82 83
  // resize feed and fetch list
  InitFeedFetchList();
84

85 86 87 88 89
#ifdef PADDLE_MOBILE_FPGA
  program_.scope->EraseVars({"feed", "fetch"});
  program_.scope->print_vars();
#endif

90
  int count = 0;
91 92 93
  for (auto &op_handler : ops_of_block0_) {
    DLOG << "Initialize op[" << count++ << "]: " << op_handler->Type();
    op_handler->Init();
L
liuruilong 已提交
94
  }
W
wangliu 已提交
95 96
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
template <typename Device, typename T>
void Executor<Device, T>::InitFeedFetchList() {
  std::unordered_map<std::string, int> feed_indices, fetch_indices;
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &op_desc : block->Ops()) {
      if (op_desc->Type() == "feed") {
        std::string name = op_desc->Output("Out")[0];
        feed_indices[name] = op_desc->GetAttr("col").Get<int>();
      } else if (op_desc->Type() == "fetch") {
        std::string name = op_desc->Input("X")[0];
        fetch_indices[name] = op_desc->GetAttr("col").Get<int>();
      }
    }
  }
  feed_indices_.swap(feed_indices);
  fetch_indices_.swap(fetch_indices);

  auto *feed_var = program_.scope->Var("feed");
  auto *feed_list = feed_var->template GetMutable<framework::LoDTensorArray>();
  feed_list->resize(feed_indices_.size());

  auto *fetch_var = program_.scope->Var("fetch");
  auto *fetch_list =
      fetch_var->template GetMutable<framework::LoDTensorArray>();
  fetch_list->resize(fetch_indices_.size());
}

124
template <typename T>
125
static void LoadMemInternal(void **data, LoDTensor *tensor,
126
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
127
  char **data_buf = reinterpret_cast<char **>(data);
128
  int64_t size = tensor->numel();
129
  T *tensor_data = tensor->mutable_data<T>();
130 131
  if (quant_uint8) {
    // should be moved into operator init function
132 133
    float min_value;
    float max_value;
134 135 136
    memory::Copy(&min_value, *data_buf, sizeof(float));
    memory::Copy(&max_value, *data_buf + sizeof(float), sizeof(float));
    *data_buf += 2 * sizeof(float);
137
    const float factor = (max_value - min_value) / 255.0;
138
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data_buf);
139 140
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
141
    }
142
    *data_buf += size * sizeof(uint8_t);
143
  } else {
144 145
    memory::Copy(tensor_data, *data_buf, size * sizeof(T));
    *data_buf += size * sizeof(T);
L
liuruilong 已提交
146
  }
147
}
W
wangliu 已提交
148

149 150 151 152
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(void **data,
                                     const std::shared_ptr<VarDesc> var_desc,
                                     LoDTensor *tensor) {
153
  char **data_buf = reinterpret_cast<char **>(data);
154
  // version
155
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
156
  *data_buf += sizeof(uint32_t);
157
  // lod information
H
hjchen2 已提交
158 159
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
Z
zhangyang 已提交
160
  memory::Copy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
161
  *data_buf += sizeof(uint64_t);
162 163 164 165

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
166
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
167
    *data_buf += sizeof(uint64_t);
168
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Z
zhangyang 已提交
169
    memory::Copy(tmp_dim.data(), *data_buf, size);
170
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
171
    *data_buf += size;
W
wangliu 已提交
172
  }
173
  // tensor version
174
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
175
  *data_buf += sizeof(uint32_t);
176
  // tensor desc size
177
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
178
  *data_buf += sizeof(int32_t);
179
  // skip tensor desc
Refine  
陈后江 已提交
180
  *data_buf += tensor_desc_size;
181

182 183
  const TensorDesc &tensor_desc = var_desc->Tensor_desc();
  tensor->Resize(make_ddim(tensor_desc.Dims()));
184 185
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
186
    case VARTYPE_TYPE_FP32:
187 188
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
189
      break;
190
    case VARTYPE_TYPE_INT8:
191
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
192
      break;
193
    case VARTYPE_TYPE_INT32:
194
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
195 196
      break;
    default:
197
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
198
  }
W
wangliu 已提交
199 200
}

201 202 203
template <typename Device, typename T>
void Executor<Device, T>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
W
wangliu 已提交
204 205 206 207
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
208
          var->template GetMutable<framework::LoDTensorArray>();
W
wangliu 已提交
209 210
          continue;
        }
Refine  
陈后江 已提交
211
        char *origin_data =
Refine  
陈后江 已提交
212
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
213
        char *data = origin_data;
H
update  
hjchen2 已提交
214
        auto tensor = var->template GetMutable<LoDTensor>();
215 216
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
217
      } else {
218
        DLOG << "init no persistable var: " << var_desc->Name();
H
update  
hjchen2 已提交
219
        varInputMemory(var_desc, var);
W
wangliu 已提交
220 221 222 223 224
      }
    }
  }
}

225 226
template <typename Device, typename T>
void Executor<Device, T>::InitCombineMemory() {
Refine  
陈后江 已提交
227
  char *origin_data = nullptr;
Refine  
陈后江 已提交
228
  bool self_alloc = false;
229
  if (program_.combined_params_buf && program_.combined_params_len) {
230 231
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
232
  } else {
Refine  
陈后江 已提交
233
    self_alloc = true;
Refine  
陈后江 已提交
234
    origin_data = ReadFileToBuff(program_.para_path);
235
  }
Refine  
陈后江 已提交
236 237
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
238
  for (const auto &block : program_desc_->Blocks()) {
L
liuruilong 已提交
239 240 241 242
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
243
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
244 245
          continue;
        }
L
liuruilong 已提交
246 247

        DLOG << " init combine memory persistable: " << var_desc->Name();
H
update  
hjchen2 已提交
248
        auto tensor = var->template GetMutable<LoDTensor>();
249
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
250
      } else {
H
update  
hjchen2 已提交
251 252
        DLOG << " init combine memory no persistable: " << var_desc->Name();
        varInputMemory(var_desc, var);
L
liuruilong 已提交
253 254 255
      }
    }
  }
Refine  
陈后江 已提交
256
  if (self_alloc) {
257
    delete[] origin_data;
Refine  
陈后江 已提交
258 259
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
260
}
261

L
liuruilong 已提交
262
template <typename Device, typename T>
L
liuruilong 已提交
263
void Executor<Device, T>::InitNoPersistableMemory(const Tensor &input_tensor) {
L
liuruilong 已提交
264 265 266 267 268 269
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      auto tensor = var->template GetMutable<LoDTensor>();
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
H
update  
hjchen2 已提交
270
          var->template GetMutable<framework::LoDTensorArray>();
L
liuruilong 已提交
271 272 273 274 275
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          DDim tensor_dim = tensor->dims();
xiebaiyuan's avatar
xiebaiyuan 已提交
276 277 278 279
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          tensor->Resize(new_dim);
L
liuruilong 已提交
280
          tensor->template mutable_data<T>();
H
update  
hjchen2 已提交
281 282 283
        } else {
          PADDLE_MOBILE_THROW_EXCEPTION("Unsupported var type `%d`",
                                        var_desc->Type());
L
liuruilong 已提交
284 285 286 287 288 289 290 291 292 293
        }
      }
    }
  }

  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<T>();
}

294 295
template <typename Device, typename T>
bool Executor<Device, T>::varInputMemory(
H
update  
hjchen2 已提交
296
    const std::shared_ptr<VarDesc> &var_desc, Variable *var) const {
297
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
298
  framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
299 300 301
  tensor->init(typeid(float));
  return true;
#endif
H
update  
hjchen2 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  auto TypeId = [](const VarType_Type &type) -> std::type_index {
    switch (type) {
      case VARTYPE_TYPE_BOOL:
        return typeid(bool);
      case VARTYPE_TYPE_FP32:
        return typeid(float);
      case VARTYPE_TYPE_INT8:
        return typeid(int8_t);
      case VARTYPE_TYPE_INT32:
        return typeid(int);
      case VARTYPE_TYPE_INT64:
        return typeid(int64_t);
      default:
        PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
    }
  };

  auto type = var_desc->Type();
  if (type == VARTYPE_TYPE_LOD_TENSOR) {
    auto data_type = var_desc->Tensor_desc().DataType();
    framework::LoDTensor *tensor = var->template GetMutable<LoDTensor>();
    tensor->mutable_data(TypeId(data_type));
  } else if (type == VARTYPE_TYPE_STEP_SCOPES) {
    std::vector<framework::Scope *> *step_scopes =
        var->template GetMutable<std::vector<framework::Scope *>>();
  } else if (type == VARTYPE_TYPE_STEP_LOD_TENSOR_ARRAY) {
    framework::LoDTensorArray *tensor_array =
        var->template GetMutable<framework::LoDTensorArray>();
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION("got unhandled var type `%d`", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
332
  }
H
update  
hjchen2 已提交
333
  return true;
xiebaiyuan's avatar
xiebaiyuan 已提交
334
}
L
liuruilong 已提交
335

336 337 338 339 340
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, Tensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
341
  }
342 343 344 345 346 347 348 349
  return this->Predict();
}

template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict(
    const std::vector<std::pair<std::string, LoDTensor>> &inputs) {
  for (const auto &input : inputs) {
    SetInput(input.second, input.first);
D
dolphin8 已提交
350
  }
351
  return this->Predict();
W
wangliu 已提交
352
}
xiebaiyuan's avatar
xiebaiyuan 已提交
353

354 355 356
template <typename Device, typename T>
std::vector<T> Executor<Device, T>::Predict(const std::vector<T> &input,
                                            const std::vector<int64_t> &dims) {
357 358 359 360 361 362 363
  PADDLE_MOBILE_ENFORCE(feed_indices_.size() != 0,
                        "We don't know which tensor should be assign, since no "
                        "feed op found in this model");
  PADDLE_MOBILE_ENFORCE(fetch_indices_.size() != 0,
                        "We don't know which tensor should be fetch out, since "
                        "no fetch op found in this model");
  std::string input_name = feed_indices_.begin()->first;
364
  Tensor feed_tensor(input, make_ddim(dims));
365
  SetInput(feed_tensor, input_name);
366 367
  std::vector<T> output;
  if (this->Predict() == PMSuccess) {
368 369
    std::string output_name = fetch_indices_.begin()->first;
    const auto output_tensor = GetOutput(output_name);
370 371 372 373 374 375
    output.resize(output_tensor->numel());
    memcpy(output.data(), output_tensor->template data<T>(),
           output.size() * sizeof(T));
  }
  return output;
}
xiebaiyuan's avatar
xiebaiyuan 已提交
376

377 378 379
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const Tensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
380
  int index = 0;
381
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
382
    index = feed_indices_.find(var_name)->second;
383
  }
H
hjchen2 已提交
384 385 386 387
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

L
liuruilong 已提交
388
  if (config_.load_when_predict) {
Z
zhaojiaying01 已提交
389 390 391
    if (input_dim_last_ != input.dims()) {
      InitNoPersistableMemory(input);
      input_dim_last_ = input.dims();
L
liuruilong 已提交
392 393 394
    }
  }

H
hjchen2 已提交
395 396
  target.Resize(input.dims());
  target.ShareDataWith(input);
397
}
xiebaiyuan's avatar
xiebaiyuan 已提交
398

399 400 401
template <typename Device, typename T>
void Executor<Device, T>::SetInput(const LoDTensor &input,
                                   const std::string &var_name) {
H
hjchen2 已提交
402
  int index = 0;
403
  if (feed_indices_.find(var_name) != feed_indices_.end()) {
H
hjchen2 已提交
404
    index = feed_indices_.find(var_name)->second;
405
  }
H
hjchen2 已提交
406 407 408 409
  auto *feed_var = program_.scope->Var("feed");
  framework::LoDTensor &target =
      feed_var->template GetMutable<framework::LoDTensorArray>()->at(index);

L
liuruilong 已提交
410
  if (config_.load_when_predict) {
Z
zhaojiaying01 已提交
411
    if (input_dim_last_ != input.dims()) {
412
      InitNoPersistableMemory(input);
Z
zhaojiaying01 已提交
413
      input_dim_last_ = input.dims();
L
liuruilong 已提交
414 415 416
    }
  }

H
hjchen2 已提交
417 418 419
  target.Resize(input.dims());
  target.ShareDataWith(input);
  target.set_lod(input.lod());
420 421 422 423 424
}

template <typename Device, typename T>
std::shared_ptr<LoDTensor> Executor<Device, T>::GetOutput(
    const std::string &var_name) {
425 426 427 428 429 430 431 432 433
  const auto &iter = fetch_indices_.find(var_name);
  if (var_name == "fetch" || iter != fetch_indices_.end()) {
    int index = 0;
    if (iter != fetch_indices_.end()) {
      index = iter->second;
    }
    auto *fetch_var = program_.scope->Var("fetch");
    framework::LoDTensor &target =
        fetch_var->template GetMutable<framework::LoDTensorArray>()->at(index);
H
hjchen2 已提交
434

435 436 437 438 439 440 441
    return std::make_shared<LoDTensor>(target);
  } else {
    auto *fetch_var = program_.scope->Var(var_name);
    framework::LoDTensor *target =
        fetch_var->template GetMutable<framework::LoDTensor>();
    return std::make_shared<LoDTensor>(*target);
  }
442
}
xiebaiyuan's avatar
xiebaiyuan 已提交
443

444 445
template <typename Device, typename T>
PMStatus Executor<Device, T>::Predict() {
xiebaiyuan's avatar
xiebaiyuan 已提交
446
#ifdef PADDLE_MOBILE_PROFILE
447
  std::vector<ProfInfo> profile(ops_of_block0_.size());
448 449
  struct timespec ts;
  int op_index = 0;
xiebaiyuan's avatar
xiebaiyuan 已提交
450
#endif
451
  for (auto &op_handler : ops_of_block0_) {
xiebaiyuan's avatar
xiebaiyuan 已提交
452
#ifdef PADDLE_MOBILE_PROFILE
453 454
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
xiebaiyuan's avatar
xiebaiyuan 已提交
455
#endif
456 457 458 459
    if (lod_mode_) {
      op_handler->InferShape();
    }
    op_handler->Run();
xiebaiyuan's avatar
xiebaiyuan 已提交
460
#ifdef PADDLE_MOBILE_PROFILE
461 462 463
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[op_index].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
    ++op_index;
xiebaiyuan's avatar
xiebaiyuan 已提交
464 465 466 467 468 469 470
#endif
  }
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
471 472 473
    if (ops_of_block0_[i]->Type() == "conv2d" ||
        ops_of_block0_[i]->Type() == "depthwise_conv2d") {
      auto inputs = ops_of_block0_[i]->Inputs();
474 475
      auto *filter =
          GetVarValue<LoDTensor>("Filter", inputs, *(program_.scope));
476
      int kernel_size = filter->dims()[2];
477 478
      _tp[ops_of_block0_[i]->Type() + "_" + std::to_string(kernel_size)] +=
          timeCost;
479
    } else {
480
      _tp[ops_of_block0_[i]->Type()] += timeCost;
481
    }
xiebaiyuan's avatar
xiebaiyuan 已提交
482
  }
H
hjchen2 已提交
483
  printf("====================[ profile ]======================\n");
484
  typedef std::pair<std::string, uint64_t> prof_t;
xiebaiyuan's avatar
xiebaiyuan 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
H
hjchen2 已提交
500
  printf("====================[---------]======================\n");
xiebaiyuan's avatar
xiebaiyuan 已提交
501
#endif
502
  return PMSuccess;
xiebaiyuan's avatar
xiebaiyuan 已提交
503 504
}

505
#ifdef PADDLE_MOBILE_FPGA
506 507 508 509
template <typename Device, typename T>
void Executor<Device, T>::InjectVariable(const Tensor &t,
                                         std::string var_name) {
  Variable *g_feed_value = program_.scope->Var(var_name);
510
  Tensor *feed_tensor = g_feed_value->template GetMutable<LoDTensor>();
511 512
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
513
}
514

515 516
template <typename Device, typename T>
void Executor<Device, T>::FeedData(const Tensor &t) {
Z
zhangyang0701 已提交
517
  InjectVariable(t, "feed0");
518
}
519

520
template <typename Device, typename T>
521
void Executor<Device, T>::FeedData(const std::vector<void *> &v) {
522
  auto input_size = v.size();
Z
zhangyang0701 已提交
523 524
  int index = 0;
  auto vars = program_.scope->VarContain("feed", &index);
525 526 527
  PADDLE_MOBILE_ENFORCE(input_size == vars.size(),
                        "input data number not correct");
  for (int i = 0; i < input_size; i++) {
Z
zhangyang0701 已提交
528
    auto var = program_.scope->Var("feed", i + index);
529 530 531 532 533 534 535 536 537
    auto feed_tensor = var->template GetMutable<LoDTensor>();
    feed_tensor->external_data = v[i];
  }
}

template <typename Device, typename T>
void Executor<Device, T>::GetResults(std::vector<void *> *v) {
  auto output_size = v->size();
  PADDLE_MOBILE_ENFORCE(output_size > 0, "Empty output");
Z
zhangyang0701 已提交
538 539
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
540 541
  PADDLE_MOBILE_ENFORCE(output_size == vars.size(),
                        "output data number not correct");
542

543
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
544
    auto var = program_.scope->Var("fetch", i + index);
545 546
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
    (*v)[i] = fetch_tensor->template data<float>();
547
  }
548
}
549

550
template <typename Device, typename T>
551 552
void Executor<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
Z
zhangyang0701 已提交
553 554
  int index = 0;
  auto vars = program_.scope->VarContain("fetch", &index);
555
  auto output_size = vars.size();
556
  for (int i = 0; i < output_size; i++) {
Z
zhangyang0701 已提交
557
    auto var = program_.scope->Var("fetch", i + index);
558
    auto fetch_tensor = var->template GetMutable<LoDTensor>();
559
    v->push_back(fetch_tensor);
560 561 562
  }
}

563 564 565 566 567
template <typename Device, typename T>
framework::Tensor *Executor<Device, T>::GetTensorByName(
    const std::string &name) {
  auto var = program_.scope->Var(name);
  return var->template GetMutable<LoDTensor>();
H
hjchen2 已提交
568
}
569

570 571
template <typename Device, typename T>
std::shared_ptr<Tensor> Executor<Device, T>::FetchResult(int id) {
572
  auto &ops = ops_of_block0_;
573

Z
zhangyang 已提交
574 575 576 577 578
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
579 580 581
  auto *output_tensor =
      GetVarValue<LoDTensor>(out_keys[0], output_map, *(program_.scope));
  return std::make_shared<Tensor>(Tensor(*output_tensor));
582
}
583

584 585
template <typename Device, typename T>
void Executor<Device, T>::Predict_From_To(int start, int end) {
586
  auto &ops = ops_of_block0_;
587
  end = end < 0 ? static_cast<int>(ops.size()) : end;
588 589 590 591 592 593 594 595 596 597 598 599
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
600
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
601 602 603 604 605 606 607
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
608
}
609

610 611
template <typename Device, typename T>
void Executor<Device, T>::Predict_From(int start) {
612
  Predict_From_To(start);
613
}
614

615 616
template <typename Device, typename T>
void Executor<Device, T>::Predict_To(int end) {
617
  Predict_From_To(0, end);
618
}
619 620
#endif

Y
yangfei 已提交
621
#ifdef PADDLE_MOBILE_CL
xiebaiyuan's avatar
xiebaiyuan 已提交
622 623
template <>
void Executor<GPU_CL, float>::InitNoPersistableMemory(
624
    const Tensor &input_tensor) {
xiebaiyuan's avatar
xiebaiyuan 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
  DLOG << "CL InitNoPersistableMemory ";
  for (const auto &block : program_desc_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());

      auto cl_image = var->template GetMutable<CLImage>();

      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
      } else {
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          DDim tensor_dim = cl_image->dims();
          DDim new_dim =
              make_ddim({tensor_dim[0], tensor_dim[1], input_tensor.dims()[2],
                         input_tensor.dims()[3]});
          cl_image->Resize(new_dim);
          cl_image->InitEmptyImage(context, command_queue, new_dim);
        }
      }
    }
  }
  std::shared_ptr<LoDTensor> output = GetOutput("fetch");
  output->Resize(input_tensor.dims());
  output->mutable_data<float>();
}
template <>
void Executor<GPU_CL, float>::SetInput(const Tensor &input,
                                       const std::string &var_name) {
  auto *target_var = program_.scope->FindVar(var_name);
  PADDLE_MOBILE_ENFORCE(target_var != nullptr, "Variable %s is not exist",
                        var_name.c_str());

  auto *target_tensor = target_var->template GetMutable<LoDTensor>();
  DLOG << "config_.load_when_predict   " << config_.load_when_predict;
  DLOG << "target_tensor->IsInitialized() " << target_tensor->IsInitialized();
  DLOG << "target_tensor->dims()   " << target_tensor->dims();
  DLOG << "input.dims()   " << input.dims();
668
  DLOG << "input_dim_last_   " << input_dim_last_;
xiebaiyuan's avatar
xiebaiyuan 已提交
669
  if (config_.load_when_predict) {
xiebaiyuan's avatar
xiebaiyuan 已提交
670
    if (input_dim_last_ != input.dims()) {
671 672 673
      DLOG << "SetInput ---- > resize1";
      target_tensor->Resize(input.dims());
      target_tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
674 675 676 677 678 679 680 681
      InitNoPersistableMemory(*target_tensor);
    }
  } else {
    DLOG << "SetInput ---- > resize2";
    target_tensor->Resize(input.dims());
    DLOG << "SetInput ---- > ShareDataWith";
  }
  target_tensor->ShareDataWith(input);
682 683
  auto &dim = input.dims();
  input_dim_last_ = static_cast<DDim>(dim);
xiebaiyuan's avatar
xiebaiyuan 已提交
684 685
}

686 687 688
template <typename Device, typename T>
void Executor<Device, T>::LoadMemory(const VarDesc var_desc, float *tensorInput,
                                     char **data) {}
L
liuruilong 已提交
689

Y
yangfei 已提交
690
template <>
H
hjchen2 已提交
691 692
void Executor<GPU_CL, float>::LoadMemory(const VarDesc var_desc,
                                         float *tensorInput, char **data) {
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

730
  const TensorDesc &desc = var_desc.Tensor_desc();
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}
765

Y
yangfei 已提交
766
template <>
767 768
void Executor<GPU_CL, float>::InitMemory() {
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
769 770 771
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
772
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
773
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
774
          var->template GetMutable<LoDTensor>();
Y
yangfei 已提交
775
          continue;
L
liuruilong 已提交
776
        } else {
777
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
778
        }
L
liuruilong 已提交
779

Y
yangfei 已提交
780
        char *origin_data =
L
liuruilong 已提交
781
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
782
        char *data = origin_data;
Y
yangfei 已提交
783
        cl_context context = program_.scope->GetCLScpoe()->Context();
784
        const TensorDesc &desc = var_desc->Tensor_desc();
785 786 787 788 789
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
Y
yangfei 已提交
790
        float *tensorInput = static_cast<float *>(
791 792
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);
Y
yangfei 已提交
793

794
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
795

L
liuruilong 已提交
796 797
        // has not init
        cl_image->SetTensorData(tensorInput, ddim);
Y
yangfei 已提交
798

799
        delete origin_data;
Y
yangfei 已提交
800
        paddle_mobile::memory::Free(tensorInput);
801
      } else {
802 803
        if (var_desc->Type() == VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<CLImage>();
804
          cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
805 806
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();
Y
yangfei 已提交
807

808 809 810
          const TensorDesc &desc = var_desc->Tensor_desc();
          //          DDim ddim = make_ddim(desc.Dims());
          DDim ddim = cl_image->dims();
811
          DLOG << var_desc->Name();
L
liuruilong 已提交
812
          cl_image->InitEmptyImage(context, command_queue, ddim);
813
        }
Y
yangfei 已提交
814 815 816 817
      }
    }
  }
}
818

Y
yangfei 已提交
819
template <>
820
void Executor<GPU_CL, float>::InitCombineMemory() {
xiebaiyuan's avatar
xiebaiyuan 已提交
821 822
  DLOG << "CL InitCombineMemory---- "
       << "config_.load_when_predict: " << config_.load_when_predict;
Y
yangfei 已提交
823 824
  char *origin_data = nullptr;
  bool self_alloc = false;
Y
yangfei 已提交
825 826
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
827
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
Y
yangfei 已提交
828 829
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
Y
yangfei 已提交
830
    self_alloc = true;
L
liuruilong 已提交
831
    origin_data = ReadFileToBuff(program_.para_path);
Y
yangfei 已提交
832 833
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
834
  float *data = reinterpret_cast<float *>(origin_data);
Y
yangfei 已提交
835

836
  for (const auto &block : program_desc_->Blocks()) {
Y
yangfei 已提交
837 838 839
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
L
liuruilong 已提交
840
        CLImage *cl_image = nullptr;
Y
yangfei 已提交
841
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
842
          var->template GetMutable<LoDTensor>();
Y
yangfei 已提交
843
          continue;
L
liuruilong 已提交
844
        } else {
845
          cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
846 847 848 849
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

850 851
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = make_ddim(desc.Dims());
Y
yangfei 已提交
852 853 854 855 856

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
857 858 859
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);
L
liuruilong 已提交
860 861 862 863

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

864 865
        paddle_mobile::memory::Free(tensorInput);
      } else {
866
        auto cl_image = var->template GetMutable<CLImage>();
Y
yangfei 已提交
867
        cl_context context = program_.scope->GetCLScpoe()->Context();
L
liuruilong 已提交
868 869
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
870 871 872
        const TensorDesc &desc = var_desc->Tensor_desc();
        DDim ddim = cl_image->dims();
        //  DDim ddim = make_ddim(desc.Dims());
L
liuruilong 已提交
873
        cl_image->InitEmptyImage(context, command_queue, ddim);
Y
yangfei 已提交
874 875 876
      }
    }
  }
Y
yangfei 已提交
877
  if (self_alloc) {
878
    delete data;
Y
yangfei 已提交
879
  }
Y
yangfei 已提交
880
  LOG(kLOG_INFO) << " end init combine memory ";
881
}
Y
yangfei 已提交
882 883 884

#endif

885
template class Executor<CPU, float>;
Y
yangfei 已提交
886

887
template class Executor<FPGA, float>;
W
wangliu 已提交
888

889
template class Executor<GPU_CL, float>;
Y
yangfei 已提交
890

891
template class Executor<GPU_MALI, float>;
Y
yangfei 已提交
892 893

}  // namespace framework
W
wangliu 已提交
894
}  // namespace paddle_mobile