executor_for_test.h 5.5 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
E
eclipsess 已提交
18
#include <vector>
L
liuruilong 已提交
19

L
liuruilong 已提交
20
#include "common/log.h"
21
#include "framework/executor.h"
22
#include "framework/op_registry.h"
L
liuruilong 已提交
23
#include "operators/conv_op.h"
E
eclipsess 已提交
24
#include "operators/elementwise_add_op.h"
L
liuruilong 已提交
25
#include "operators/pool_op.h"
E
eclipsess 已提交
26
#include "operators/relu_op.h"
E
eclipsess 已提交
27
#include "operators/reshape_op.h"
W
wangliu 已提交
28
#include "operators/sigmoid_op.h"
L
liuruilong 已提交
29
#include "operators/softmax_op.h"
E
eclipsess 已提交
30
#include "operators/transpose_op.h"
L
liuruilong 已提交
31 32 33

using paddle_mobile::framework::BlockDesc;
using paddle_mobile::framework::DDim;
34
using paddle_mobile::framework::Executor;
L
liuruilong 已提交
35 36 37 38 39 40
using paddle_mobile::framework::LoDTensor;
using paddle_mobile::framework::OpDesc;
using paddle_mobile::framework::Program;
using paddle_mobile::framework::Tensor;
using paddle_mobile::framework::Variable;
using std::string;
E
eclipsess 已提交
41
using std::vector;
L
liuruilong 已提交
42 43 44
template <typename DeviceType, typename OpType>
class Executor4Test : public Executor<DeviceType> {
 public:
L
liuruilong 已提交
45
  Executor4Test(Program<DeviceType> p, string op_type,
46
                bool use_optimize = false, int predict_op_count = 1)
L
liuruilong 已提交
47
      : Executor<DeviceType>() {
L
liuruilong 已提交
48
    this->use_optimize_ = use_optimize;
L
liuruilong 已提交
49 50 51 52 53 54 55
    this->program_ = p;
    if (this->use_optimize_) {
      this->to_predict_program_ = this->program_.optimizeProgram;
    } else {
      this->to_predict_program_ = this->program_.originProgram;
    }

L
liuruilong 已提交
56 57 58 59
    if (this->program_.originProgram == nullptr) {
      LOG(paddle_mobile::LogLevel::kLOG_ERROR)
          << "to_predict_program_ == nullptr";
    }
60

L
liuruilong 已提交
61 62 63 64
    const std::vector<std::shared_ptr<BlockDesc>> blocks =
        this->to_predict_program_->Blocks();
    for (std::shared_ptr<BlockDesc> block_desc : blocks) {
      std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
65 66 67
      for (int i = 0; i < ops.size(); ++i) {
        auto op = ops[i];
        if (op->Type() == op_type && i < predict_op_count) {
L
liuruilong 已提交
68 69
          DLOG << "匹配到: " << op->Type();

E
eclipsess 已提交
70
          /// test first meeting op in program
Z
zhaojiaying01 已提交
71
          std::shared_ptr<paddle_mobile::framework::OperatorBase<DeviceType>>
L
liuruilong 已提交
72 73 74 75
              op_ptr =
                  paddle_mobile::framework::OpRegistry<DeviceType>::CreateOp(
                      op->Type(), op->GetInputs(), op->GetOutputs(),
                      op->GetAttrMap(), this->program_.scope);
L
liuruilong 已提交
76 77 78 79
          this->ops_of_block_[*block_desc.get()].push_back(op_ptr);
        }
      }
    }
80
    this->InitMemory();
81 82 83 84 85 86 87

    std::shared_ptr<paddle_mobile::framework::BlockDesc> to_predict_block =
        this->to_predict_program_->Block(0);
    auto &ops = this->ops_of_block_[*to_predict_block.get()];
    for (const auto &op : ops) {
      op->Init();
    }
L
liuruilong 已提交
88 89
  }

E
eclipsess 已提交
90
  template <typename T = LoDTensor>
L
liuruilong 已提交
91
  vector<std::shared_ptr<Tensor>> Predict(const vector<Tensor> &ts,
E
eclipsess 已提交
92 93 94
                                          const vector<string> &input_names,
                                          const vector<string> &output_names,
                                          const vector<DDim> &ddims) {
L
liuruilong 已提交
95
    auto scope = this->program_.scope;
E
eclipsess 已提交
96 97
    size_t input_size = input_names.size();
    size_t out_size = output_names.size();
L
liuruilong 已提交
98

E
eclipsess 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    vector<Variable *> input_vars(input_size);
    vector<LoDTensor *> input_tensors(input_size);
    for (int i = 0; i < input_size; i++) {
      input_vars[i] = scope->Var(input_names[i]);
      input_tensors[i] = input_vars[i]->GetMutable<T>();
      input_tensors[i]->ShareDataWith(ts[i]);
    }

    vector<Variable *> output_vars(out_size);
    vector<LoDTensor *> output_tensors(out_size);
    vector<std::shared_ptr<Tensor>> output_tensor_sptrs(out_size);

    for (int i = 0; i < out_size; i++) {
      output_vars[i] = scope->Var(output_names[i]);
      output_tensors[i] = output_vars[i]->GetMutable<T>();
      output_tensors[i]->mutable_data<float>(ddims[i]);
      output_tensor_sptrs[i] = std::make_shared<LoDTensor>();
      output_tensor_sptrs[i].reset(output_tensors[i]);
    }
L
liuruilong 已提交
118

L
liuruilong 已提交
119 120 121 122 123 124 125 126
    std::shared_ptr<paddle_mobile::framework::BlockDesc> to_predict_block =
        this->to_predict_program_->Block(0);
    for (int j = 0; j < this->ops_of_block_[*to_predict_block.get()].size();
         ++j) {
      auto op = this->ops_of_block_[*to_predict_block.get()][j];
      op->Run();
    }

E
eclipsess 已提交
127
    return output_tensor_sptrs;
L
liuruilong 已提交
128
  }
129

L
liuruilong 已提交
130
  std::shared_ptr<Tensor> Predict(const Tensor &t, string input, string output,
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
                                  const DDim &dDim) {
    auto scope = this->program_.scope;
    Variable *g_feed_value = scope->Var(input);
    auto tensor = g_feed_value->GetMutable<LoDTensor>();
    tensor->ShareDataWith(t);

    Variable *con_output = scope->Var(output);
    auto *output_tensor = con_output->GetMutable<LoDTensor>();
    output_tensor->mutable_data<float>(dDim);

    std::shared_ptr<paddle_mobile::framework::BlockDesc> to_predict_block =
        this->to_predict_program_->Block(0);
    for (int j = 0; j < this->ops_of_block_[*to_predict_block.get()].size();
         ++j) {
      auto op = this->ops_of_block_[*to_predict_block.get()][j];
      op->Run();
    }

149 150
    return std::make_shared<paddle_mobile::framework::Tensor>(
        paddle_mobile::framework::Tensor(*output_tensor));
151
  }
L
liuruilong 已提交
152
};