elementwise_ops_test.cc 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/elementwise_ops.h"
#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_registry.h"
19
#include "lite/core/subgraph_bridge_registry.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
#include "lite/kernels/mlu/bridges/test_helper.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

template <typename dtype>
void elementwise_add_ref(const std::shared_ptr<operators::ElementwiseOp> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto x = scope->FindTensor("x");
  auto y = scope->FindTensor("y");
  auto out = scope->FindMutableTensor("out_ref");
  out->Resize(x->dims());

  auto x_data = x->data<dtype>();
  auto y_data = y->data<dtype>();
  auto out_data = out->mutable_data<dtype>();

  auto x_dims = x->dims();
  auto y_dims = y->dims();
  int axis = op_info->GetAttr<int>("axis");

  if (axis < 0) {
    axis += x_dims.size();
  }
  int batch = 1;
  int channels = y->numel();
  int num = x->numel() / channels / batch;
  // do elementwise add/sub/max...
  std::string op_type = op_info->Type();
  if (op_type == "elementwise_add") {
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < channels; ++j) {
        int offset = (i * channels + j) * num;
        const dtype* din_ptr = x_data + offset;
        const dtype diny_data = y_data[j];
        dtype* dout_ptr = out_data + offset;
        for (int k = 0; k < num; ++k) {
          *dout_ptr = *din_ptr + diny_data;
          dout_ptr++;
          din_ptr++;
        }
      }
    }
  } else if (op_type == "elementwise_sub") {
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < channels; ++j) {
        int offset = (i * channels + j) * num;
        const dtype* din_ptr = x_data + offset;
        const dtype diny_data = y_data[j];
        dtype* dout_ptr = out_data + offset;
        for (int k = 0; k < num; ++k) {
          *dout_ptr = *din_ptr - diny_data;
          dout_ptr++;
          din_ptr++;
        }
      }
    }
  } else if (op_type == "elementwise_mul") {
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < channels; ++j) {
        int offset = (i * channels + j) * num;
        const dtype* din_ptr = x_data + offset;
        const dtype diny_data = y_data[j];
        dtype* dout_ptr = out_data + offset;
        for (int k = 0; k < num; ++k) {
          *dout_ptr = *din_ptr * diny_data;
          dout_ptr++;
          din_ptr++;
        }
      }
    }
  } else if (op_type == "elementwise_div") {
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < channels; ++j) {
        int offset = (i * channels + j) * num;
        const dtype* din_ptr = x_data + offset;
        const dtype diny_data = y_data[j];
        dtype* dout_ptr = out_data + offset;
        for (int k = 0; k < num; ++k) {
          *dout_ptr = *din_ptr / diny_data;
          dout_ptr++;
          din_ptr++;
        }
      }
    }
  } else if (op_type == "elementwise_max") {
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < channels; ++j) {
        int offset = (i * channels + j) * num;
        const dtype* din_ptr = x_data + offset;
        const dtype diny_data = y_data[j];
        dtype* dout_ptr = out_data + offset;
        for (int k = 0; k < num; ++k) {
          *dout_ptr = std::max(*din_ptr, diny_data);
          dout_ptr++;
          din_ptr++;
        }
      }
    }
  } else {
    LOG(FATAL) << "unsupported Elementwise type: " << op_type;
  }
}

void test_elementwise_add(const std::vector<int64_t>& x_shape,
                          const std::vector<int64_t>& y_shape,
                          int axis,
                          std::string elt_type) {
  // prepare input&output variables
  Scope scope;
  std::string x_var_name = "x";
  std::string y_var_name = "y";
  std::string out_var_name = "out";
  std::string out_ref_var_name = "out_ref";
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* y = scope.Var(y_var_name)->GetMutable<Tensor>();
  auto* out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto* out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
  x->Resize(x_shape);
  y->Resize(y_shape);

  // initialize input&output data
  FillTensor<float>(x, 1, 3);
  FillTensor<float>(y, 1, 3);

  // initialize op desc
  cpp::OpDesc opdesc;
  opdesc.SetType("elementwise_" + elt_type);
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetInput("Y", {y_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetAttr("axis", axis);

156
  // create and convert op to MLU model, then run it on MLU
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
  auto op = CreateOp<operators::ElementwiseOp>(opdesc, &scope);

  // execute reference implementation and save to output tensor
  elementwise_add_ref<float>(op);
  out_ref->CopyDataFrom(*out);

  LaunchOp(op, {x_var_name, y_var_name}, {out_var_name});
  // compare results
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();
  for (int i = 0; i < out->dims().production(); i++) {
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2);
  }
}

TEST(MLUBridges, elementwise_add) {
  for (auto elt_type : {"add", "sub", "mul", "div"}) {
    // test_elementwise_add({1, 2, 3, 4}, {2}, 1, elt_type);
    // test_elementwise_add({1, 2, 3, 4}, {1, 2, 1, 1}, 1, elt_type);
    test_elementwise_add({1, 2, 3, 4}, {1, 2, 3, 4}, 3, elt_type);
  }
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

185 186 187 188
USE_SUBGRAPH_BRIDGE(elementwise_add, kMLU)
USE_SUBGRAPH_BRIDGE(elementwise_sub, kMLU)
USE_SUBGRAPH_BRIDGE(elementwise_mul, kMLU)
USE_SUBGRAPH_BRIDGE(elementwise_div, kMLU)