pool_op.cc 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14

15
#include <bmcompiler_defs.h>
16
#include <bmcompiler_if.h>
17 18
#include <bmcompiler_if_lite.h>
#include <user_bmcpu_common.h>
19
#include "lite/core/subgraph_bridge_registry.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {

int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto scope = op->scope();
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto unique_op_name = lite::subgraph::bm::UniqueName(op_type);
  // input
  auto x_var_name = op_info->Input("X").front();
  auto x = scope->FindVar(x_var_name)->GetMutable<lite::Tensor>();
  auto x_dims = x->dims();
  const int64_t* x_shape_data = const_cast<const int64_t*>(&x_dims.data()[0]);
  std::vector<int32_t> i_x_shape_data(x_dims.size());
  for (size_t i = 0; i < x_dims.size(); i++) {
    i_x_shape_data[i] = static_cast<int>(x_shape_data[i]);
  }
  // output
  int32_t* shape[1];
  int32_t dim[1];
  const char* name[1];
  auto output_var_name = op_info->Output("Out").front();
  auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
  auto output_dims = output->dims();
  const int64_t* output_shape_data =
      const_cast<const int64_t*>(&output_dims.data()[0]);
  std::vector<int32_t> i_output_shape_data(output_dims.size());
  for (size_t i = 0; i < output_dims.size(); i++) {
    i_output_shape_data[i] = static_cast<int>(output_shape_data[i]);
  }
  shape[0] = &i_output_shape_data[0];
  name[0] = static_cast<const char*>(output_var_name.c_str());
  dim[0] = output_dims.size();
61 62 63 64 65 66
  std::string pooling_type;
  if (op_info->HasAttr("pooling_type")) {
    pooling_type = op_info->GetAttr<std::string>("pooling_type");
  } else if (op_type == "max_pool2d_with_index") {
    pooling_type = "max";
  }
67 68 69 70 71
  CHECK(pooling_type == "max" || pooling_type == "avg");
  auto ksize = op_info->GetAttr<std::vector<int>>("ksize");
  auto paddings = op_info->GetAttr<std::vector<int>>("paddings");
  auto strides = op_info->GetAttr<std::vector<int>>("strides");
  auto global_pooling = op_info->GetAttr<bool>("global_pooling");
72 73 74 75 76 77 78 79
  bool ceil_mode = false;
  if (op_info->HasAttr("ceil_mode")) {
    ceil_mode = op_info->GetAttr<bool>("ceil_mode");
  }
  bool adaptive = false;
  if (op_info->HasAttr("adaptive")) {
    adaptive = op_info->GetAttr<bool>("adaptive");
  }
80 81 82 83
  bool average_exclusive = false;
  if (pooling_type == "avg") {
    average_exclusive = op_info->GetAttr<bool>("exclusive");
  }
84 85 86
  if (output_dims[2] == 1 && output_dims[3] == 1) {
    global_pooling = true;
  }
87 88 89 90 91 92
  if (global_pooling) {
    paddings[0] = 0;
    paddings[1] = 0;
    ksize[0] = i_x_shape_data[2];
    ksize[1] = i_x_shape_data[3];
  }
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  bool is_max = (pooling_type == "max");
  if (adaptive && !global_pooling) {
    user_cpu_param_t bm_param;
    bm_param.op_type = USER_PADDLE_ADAPTIVE_POOL;
    bm_param.u.adaptive_pool_parm.is_avg = !is_max;
    int32_t* in_shape[1];
    int32_t in_dim[1];
    const char* in_name[1];
    in_shape[0] = &i_x_shape_data[0];
    in_name[0] = static_cast<const char*>(x_var_name.c_str());
    in_dim[0] = x_dims.size();
    add_user_cpu_layer(graph->GetCompilerHandle(),
                       1,
                       in_shape,
                       in_dim,
                       in_name,
                       1,
                       shape,
                       dim,
                       name,
                       &bm_param,
                       static_cast<int>(sizeof(bm_param)));
  } else {
    add_pooling_layer(graph->GetCompilerHandle(),
                      const_cast<const int*>(&i_x_shape_data[0]),
                      x_dims.size(),
                      static_cast<const char*>(x_var_name.c_str()),
                      1,
                      shape,
                      dim,
                      name,
                      ksize[0],
                      ksize[1],
                      paddings[0],
                      paddings[0],
                      paddings[1],
                      paddings[1],
                      strides[0],
                      strides[1],
                      is_max ? 0 : 1,
                      static_cast<int>(average_exclusive),
                      static_cast<int>(global_pooling),
                      static_cast<int>(ceil_mode),
                      static_cast<const char*>(unique_op_name.c_str()),
                      nullptr);
  }
139 140 141 142 143 144 145 146 147 148 149
  graph->AddNode(output_var_name);
  return SUCCESS;
}

}  // namespace bm
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(pool2d,
                         kBM,
                         paddle::lite::subgraph::bm::PoolConverter);
150 151 152
REGISTER_SUBGRAPH_BRIDGE(max_pool2d_with_index,
                         kBM,
                         paddle::lite::subgraph::bm::PoolConverter);