conv_bn_kernel.cpp 2.9 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVBN_OP

#include "operators/kernel/conv_bn_kernel.h"
H
hanbuhe 已提交
18
#include "fpga/api.h"
Z
zhangyang 已提交
19 20 21 22 23

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
24
bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
Z
zhangyang 已提交
25
  bool relu_enabled = false;
Z
zhangyang 已提交
26 27 28
  auto input = const_cast<Tensor *>(param->Input());
  auto filter = const_cast<Tensor *>(param->Filter());
  auto out = param->Output();
Z
zhangyang 已提交
29 30 31 32 33
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
34 35
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == param->InputBias()->dims()[0],
                        "Output channel should be equal to bias number");
Z
zhangyang 已提交
36

Z
zhangyang 已提交
37
  const int channel = out->dims()[1];
Z
zhangyang 已提交
38
  auto bs_ptr =
Z
zhangyang 已提交
39
      reinterpret_cast<float *>(fpga::fpga_malloc(2 * channel * sizeof(float)));
Z
zhangyang 已提交
40 41
  auto new_scale = new Tensor();
  auto new_bias = new Tensor();
Z
zhangyang 已提交
42 43 44 45 46 47
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
Z
zhangyang 已提交
48
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
49 50
    bs_ptr[i + channel] = new_scale_ptr[i];
    bs_ptr[i] = new_bias_ptr[i];
Z
zhangyang 已提交
51 52 53
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);
Z
zhangyang 已提交
54 55 56

  float max_value = fpga::filter_find_max(filter);
  fpga::format_filter(filter, max_value, param->Groups());
Z
zhangyang 已提交
57

Z
zhangyang 已提交
58
  int element_num_per_div =
59
      fpga::get_filter_num_per_div(filter, param->Groups());
Z
zhangyang 已提交
60 61 62 63
  fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);

  fpga::format_ofm(out);

64 65 66 67 68
  fpga::WrapperConvArgs conv_arg;
  fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
                      param->Groups(), param->Strides()[0], param->Strides()[1],
                      param->Paddings()[0], param->Paddings()[1], bs_ptr);
  param->SetFpgaArgs(conv_arg);
Z
zhangyang 已提交
69 70 71 72
  return true;
}

template <>
N
nhzlx 已提交
73 74
void ConvBNKernel<FPGA, float>::Compute(
    const FusionConvBNParam<FPGA> &param) const {
Z
zhangyang 已提交
75 76 77 78 79 80 81
  fpga::ComputeFpgaConv(param.FpgaArgs());
}

}  // namespace operators
}  // namespace paddle_mobile

#endif