op_param.h 104.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
22
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
26
#include "framework/type_trait.h"
朔-望's avatar
朔-望 已提交
27
#include "framework/variable.h"
Z
zhangyang 已提交
28 29 30 31 32 33 34

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
35
#endif
朔-望's avatar
朔-望 已提交
36

C
Chon 已提交
37 38 39 40
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
41 42
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
43
#endif
朔-望's avatar
朔-望 已提交
44 45

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
46 47
namespace operators {

W
wangliu 已提交
48 49 50 51 52
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
53
using framework::Variable;
W
wangliu 已提交
54 55
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
56

57
using framework::DtypeTensorTrait;
L
liuruilong 已提交
58

L
liuruilong 已提交
59
class OpParam {
60 61
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
62 63
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
64

65 66
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
67

C
Chon 已提交
68 69 70 71 72 73
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
74
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
75 76 77 78
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
79 80 81 82 83 84 85

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

86 87 88 89 90
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

91 92 93 94 95 96 97 98 99
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
100 101 102 103 104
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

132 133 134 135
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
136 137 138 139 140 141

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

142 143 144 145 146
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
147 148 149 150 151
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

152 153 154 155 156
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
157 158 159 160
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
161 162 163 164 165 166 167 168 169 170 171 172
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
173 174 175 176
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
193

E
eclipsess 已提交
194 195 196 197 198 199 200 201 202 203
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
204 205 206 207
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
208

209
  template <typename T>
W
wangliu 已提交
210 211
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
212 213 214
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
215 216 217 218 219
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
220 221 222 223 224 225
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
226 227 228 229 230
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
231 232 233 234 235 236 237 238 239 240 241
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
242 243 244 245 246 247
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253 254 255 256 257 258 259
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

260 261 262 263 264
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
265 266 267 268 269
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

270 271 272 273 274
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
275 276 277 278 279 280
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

281 282 283 284 285
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
286 287 288 289 290 291
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
292 293 294 295 296 297
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
298 299 300 301 302
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
303 304 305 306 307
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
308 309 310 311 312 313
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

314 315 316 317 318 319 320 321 322 323 324
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
325
  static const T GetAttr(const string &key, const AttributeMap &map) {
326 327
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
328 329
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
330 331
    return ((Attribute)map.at(key)).GetString();
  }
332

333 334 335 336
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

337
  template <typename T>
W
wangliu 已提交
338
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
339
                        const Scope &scope) {
W
wangliu 已提交
340 341
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
342 343 344 345 346 347
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
348
    }
349
  }
朔-望's avatar
朔-望 已提交
350

E
eclipsess 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

364
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
365
                            int index) {
366 367
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

386
  template <typename T>
W
wangliu 已提交
387 388 389
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
390 391
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
392
    vector<T *> var_res;
393 394 395
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
396
    }
397 398
    return var_res;
  }
E
eclipsess 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
412 413
};

414 415 416 417 418 419
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
420
template <typename Dtype>
421
class ConvParam : public OpParam {
N
nhzlx 已提交
422 423 424
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
425
 public:
426
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
427 428 429 430
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
431
    if (outputs.count("Output")) {
432
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
433 434 435 436 437
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
438
  }
朔-望's avatar
朔-望 已提交
439

440
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
441

442
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
443

444
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
445

W
wangliu 已提交
446
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
447

W
wangliu 已提交
448
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
449

W
wangliu 已提交
450
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
451

H
hjchen2 已提交
452 453 454
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
455 456
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
457 458
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
459
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
460
    EXEC_GEMM_INT8,
H
hjchen2 已提交
461
    EXEC_DEPTHWISE3x3_INT8,
462
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
463 464
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
465 466 467 468 469
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
470
    EXEC_GEMM1x1s1_FLOAT,
H
hjchen2 已提交
471 472 473 474
  };

  ExecMode &ExecMode() const { return exec_mode_; }

475
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
476

477 478 479 480 481 482 483
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
484
 public:
485 486 487 488
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
489 490 491
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
492
  mutable enum ExecMode exec_mode_;
493
  int groups;
494 495 496 497

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
498 499 500

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
501
 public:
Z
zhangyang 已提交
502 503 504 505 506
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
507 508 509 510 511 512 513

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
514
#endif
朔-望's avatar
朔-望 已提交
515
};
N
nhzlx 已提交
516 517
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
518

N
nhzlx 已提交
519
template <typename Dtype>
520
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
521 522 523
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
524
 public:
525
  ElementwiseAddParam(const VariableNameMap &inputs,
526
                      const VariableNameMap &outputs, const AttributeMap &attrs,
527 528 529 530 531
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
532 533 534
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
535
  const GType *InputX() const { return input_x_; }
536

xiebaiyuan's avatar
xiebaiyuan 已提交
537
  const GType *InputY() const { return input_y_; }
538

xiebaiyuan's avatar
xiebaiyuan 已提交
539
  GType *Out() const { return out_; }
540 541 542

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
543
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
544 545 546
  GType *input_x_;
  GType *input_y_;
  GType *out_;
547
  int axis_;
Z
zhangyang 已提交
548 549 550
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
551
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
552 553

 public:
H
hanbuhe 已提交
554 555
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
556 557 558 559

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
560
#endif
朔-望's avatar
朔-望 已提交
561 562
};

E
eclipsess 已提交
563
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
564
template <typename Dtype>
565
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
566 567 568 569 570 571
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
572 573 574 575 576
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
593 594 595 596 597 598
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
599
};
S
suiyang 已提交
600
#endif
E
eclipsess 已提交
601

602
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
603 604
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
605 606
#endif

607
#ifdef ELEMENTWISESUB_OP
608
template <typename Dtype>
609
class ElementwiseSubParam : public OpParam {
610 611 612 613 614 615
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
616 617 618 619 620
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
638
#endif
639

L
liuruilong 已提交
640
#ifdef MUL_OP
N
nhzlx 已提交
641
template <typename Dtype>
642
class MulParam : public OpParam {
N
nhzlx 已提交
643 644 645
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
646
 public:
647
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
648 649 650 651 652
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
653 654 655
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
656

xiebaiyuan's avatar
xiebaiyuan 已提交
657
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
658

xiebaiyuan's avatar
xiebaiyuan 已提交
659
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
660

xiebaiyuan's avatar
xiebaiyuan 已提交
661
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
662

663
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
664

665
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
666

朔-望's avatar
朔-望 已提交
667
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
668 669 670
  GType *input_x_;
  GType *input_y_;
  GType *out_;
671 672
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
673
};
L
liuruilong 已提交
674
#endif
朔-望's avatar
朔-望 已提交
675

L
liuruilong 已提交
676
#ifdef CONCAT_OP
N
nhzlx 已提交
677
template <typename Dtype>
朔-望's avatar
朔-望 已提交
678
class ConcatParam : public OpParam {
N
nhzlx 已提交
679 680 681
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
682
 public:
683
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
684 685 686 687
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
688
    axis_ = GetAttr<int>("axis", attrs);
689
    original_output_dims_size_ = inputs_[0]->dims().size();
690
  }
朔-望's avatar
朔-望 已提交
691

N
nhzlx 已提交
692
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
693

xiebaiyuan's avatar
xiebaiyuan 已提交
694
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
695

696
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
697

698
 public:
N
nhzlx 已提交
699
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
700
  GType *out_;
701
  int axis_;
702
  int original_output_dims_size_;
Z
zhangyang 已提交
703 704 705 706 707 708 709 710 711
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
712
};
L
liuruilong 已提交
713
#endif
朔-望's avatar
朔-望 已提交
714

E
eclipsess 已提交
715 716 717 718 719 720 721 722
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
723 724 725 726 727 728
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
747
#ifdef LRN_OP
N
nhzlx 已提交
748
template <typename Dtype>
E
eclipsess 已提交
749
class LrnParam : public OpParam {
N
nhzlx 已提交
750 751 752
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
753
 public:
754
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
755 756 757 758 759
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
760 761 762 763
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
764
    data_format_ = GetStringAttr("data_format", attrs);
765
  }
E
eclipsess 已提交
766

767
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
768

769
  GType *Out() const { return out_; }
E
eclipsess 已提交
770

771
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
772

773
  const int &N() const { return n_; }
E
eclipsess 已提交
774

775
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
776

777
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
778

779
  const float &K() const { return k_; }
E
eclipsess 已提交
780

W
wangliu 已提交
781
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
782

朔-望's avatar
朔-望 已提交
783
 private:
784 785 786
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
787 788 789 790
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
791
  string data_format_;
E
eclipsess 已提交
792
};
L
liuruilong 已提交
793 794
#endif

Z
zhaojiaying01 已提交
795 796
#ifdef NORM_OP
template <typename Dtype>
797
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
798 799 800 801 802
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
803 804 805 806 807
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
808 809 810 811
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

812
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
813

814
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
815

816
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
817 818 819 820 821 822

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
823 824 825
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
826 827 828 829 830
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
831
#ifdef BATCHNORM_OP
N
nhzlx 已提交
832
template <typename Dtype>
833
class BatchNormParam : public OpParam {
N
nhzlx 已提交
834 835 836
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
837
 public:
838
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
839 840 841 842 843 844 845 846
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
847 848
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
849
    //    is_test_ = GetAttr<bool>("is_test", attrs);
850
  }
E
eclipsess 已提交
851

852
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
853

854
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
855

856
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
857

858
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
859

860
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
861

862
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
863

864
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
865

866
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
867

868
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
869

W
wangliu 已提交
870
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
871

872
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
873

874
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
875

876
  const GType *NewScale() const { return new_scale_; }
877

878
  const GType *NewBias() const { return new_bias_; }
879

朔-望's avatar
朔-望 已提交
880
 private:
881 882 883 884 885 886
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
887 888 889
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
890
  string data_format_;
891 892
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
893
};
L
liuruilong 已提交
894 895 896
#endif

#ifdef POOL_OP
N
nhzlx 已提交
897
template <typename Dtype>
898
class PoolParam : public OpParam {
N
nhzlx 已提交
899 900 901
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
902
 public:
903
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
904 905 906
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
907

908
    output_ = OutFrom<GType>(outputs, *scope);
909
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
910 911 912
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
913
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
914
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
915 916 917 918 919 920

    if (HasAttr("exclusive", attrs)) {
      exclusive_ = GetAttr<bool>("exclusive", attrs);
    } else {
      exclusive_ = true;
    }
921
  }
922

923
  const GType *Input() const { return input_; }
924

925
  GType *Output() const { return output_; }
926

W
wangliu 已提交
927
  const string &PoolingType() const { return pooling_type_; }
928

W
wangliu 已提交
929
  const vector<int> &Ksize() const { return ksize_; }
930

W
wangliu 已提交
931
  const vector<int> &Strides() const { return strides_; }
932

W
wangliu 已提交
933
  const vector<int> &Paddings() const { return paddings_; }
934

935
  bool isCeilMode() const { return ceil_mode_; }
936

Z
zhangyang 已提交
937
  bool isGlobalPooling() const { return global_pooling_; }
938

939 940
  bool isExclusive() const { return exclusive_; }

朔-望's avatar
朔-望 已提交
941
 private:
942 943
  GType *input_;
  GType *output_;
W
wangliu 已提交
944 945 946 947
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
948
  bool ceil_mode_;
949
  bool global_pooling_ = false;
950
  bool exclusive_ = true;
Z
zhangyang 已提交
951
#ifdef PADDLE_MOBILE_FPGA
952 953

 private:
H
hanbuhe 已提交
954
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
955 956

 public:
H
hanbuhe 已提交
957 958
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
959
#endif
960
};
L
liuruilong 已提交
961 962 963
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
964
template <typename Dtype>
E
eclipsess 已提交
965
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
966 967 968
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
969 970
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
971 972 973 974 975 976
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
977 978 979 980
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
981 982 983 984

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
985 986
    } else {
      min_max_aspect_ratios_order_ = false;
987
    }
E
eclipsess 已提交
988 989 990 991 992 993
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
994
  const GType *Input() const { return input_; }
E
eclipsess 已提交
995

996
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
997

998
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
999

1000
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1001

W
wangliu 已提交
1002
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1003

W
wangliu 已提交
1004
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1005

W
wangliu 已提交
1006
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1007

W
wangliu 已提交
1008
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1020 1021 1022 1023
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1024
 private:
1025 1026 1027 1028
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1029 1030 1031 1032
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1033 1034 1035 1036 1037
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1038
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1039
};
L
liuruilong 已提交
1040
#endif
E
eclipsess 已提交
1041

L
liuruilong 已提交
1042
#ifdef BOXCODER_OP
N
nhzlx 已提交
1043
template <typename Dtype>
E
eclipsess 已提交
1044
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1045 1046 1047
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1048 1049
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1050 1051 1052 1053 1054 1055
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1056
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1057
  }
1058
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1059

1060
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1061

1062
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1063

1064
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1065 1066 1067 1068

  const std::string &CodeType() const { return code_type_; }

 private:
1069 1070 1071 1072
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1073 1074
  std::string code_type_;
};
L
liuruilong 已提交
1075
#endif
W
wangliu 已提交
1076

L
liuruilong 已提交
1077
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1078
template <typename Dtype>
W
wangliu 已提交
1079
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1080 1081 1082
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1083 1084
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1085 1086 1087 1088
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1089
  }
H
hjchen2 已提交
1090 1091
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1092 1093

 private:
H
hjchen2 已提交
1094 1095
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1096 1097 1098

#ifdef PADDLE_MOBILE_FPGA

1099 1100
#ifdef PADDLE_MOBILE_FPGA_V1

H
hanbuhe 已提交
1101
 private:
1102
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1103 1104 1105
  fpga::BypassArgs fpga_bypass_args;

 public:
1106
  GType *FloatInput() const {
H
hanbuhe 已提交
1107 1108
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1109
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1110 1111
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
#else

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }

 public:
  std::shared_ptr<Tensor> float_input_x_, float_out;
#endif
H
hanbuhe 已提交
1124
#endif
W
wangliu 已提交
1125
};
L
liuruilong 已提交
1126
#endif
W
wangliu 已提交
1127

L
liuruilong 已提交
1128
#ifdef SIGMOID_OP
N
nhzlx 已提交
1129
template <typename Dtype>
W
wangliu 已提交
1130
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1131 1132 1133
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1134 1135
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1136 1137 1138 1139
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1140
  }
1141 1142
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1143 1144

 private:
1145 1146
  GType *input_x_;
  GType *out_;
1147 1148 1149 1150 1151 1152 1153 1154 1155
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1156
};
L
liuruilong 已提交
1157 1158 1159
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1160
template <typename Dtype>
E
eclipsess 已提交
1161
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1162 1163 1164
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1165 1166 1167
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1168 1169 1170 1171 1172
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1173 1174 1175 1176 1177 1178 1179 1180
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1181
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1182

1183
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1184

1185
  GType *Out() const { return out_; }
E
eclipsess 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1200 1201 1202
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1203 1204 1205 1206 1207 1208 1209
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1210
#endif
W
wangliu 已提交
1211

L
lijiancheng0614 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1221 1222 1223 1224
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1225
  }
1226 1227
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1228 1229

 private:
1230 1231
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1232 1233 1234
};
#endif

N
nhzlx 已提交
1235
template <typename Dtype>
L
liuruilong 已提交
1236
class FeedParam : public OpParam {
N
nhzlx 已提交
1237 1238 1239
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1240 1241
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1242
            const AttributeMap &attrs, Scope *scope)
1243
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1244
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1245
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1246
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1247
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1248
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1249
  }
H
hjchen2 已提交
1250
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1251
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1252
  const int Col() const { return col_; }
W
wangliu 已提交
1253
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1254

L
liuruilong 已提交
1255
 private:
H
hjchen2 已提交
1256
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1257
  GType *out_;
H
update  
hjchen2 已提交
1258
  int col_;
W
wangliu 已提交
1259
  int batch_size;
L
liuruilong 已提交
1260 1261
};

N
nhzlx 已提交
1262
template <typename Dtype>
L
liuruilong 已提交
1263
class FetchParam : public OpParam {
N
nhzlx 已提交
1264 1265 1266
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1267 1268
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1269
             const AttributeMap &attrs, Scope *scope)
1270
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1271 1272
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1273
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1274
  }
L
liuruilong 已提交
1275

H
hjchen2 已提交
1276 1277
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1278
  const int Col() const { return col_; }
L
liuruilong 已提交
1279

L
liuruilong 已提交
1280
 private:
H
hjchen2 已提交
1281 1282
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1283
  int col_;
qnqinan's avatar
qnqinan 已提交
1284
#ifdef PADDLE_MOBILE_FPGA
1285

qnqinan's avatar
qnqinan 已提交
1286
 public:
1287
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1288
  fpga::BypassArgs fpga_bypass_args;
1289
  Tensor aligned_out;
1290 1291 1292
#else
  std::shared_ptr<Tensor> aligned_out;
#endif
qnqinan's avatar
qnqinan 已提交
1293
#endif
L
liuruilong 已提交
1294 1295
};

L
lijiancheng0614 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1305 1306 1307 1308
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1309 1310 1311 1312 1313 1314 1315
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1316
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1326
  GType *out_;
L
lijiancheng0614 已提交
1327 1328 1329 1330 1331 1332
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1333
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1334
template <typename Dtype>
E
eclipsess 已提交
1335
class TransposeParam : public OpParam {
N
nhzlx 已提交
1336 1337 1338
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1339 1340
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1341 1342 1343 1344
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1345 1346 1347
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1348
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1349

1350
  GType *Out() const { return out_; }
E
eclipsess 已提交
1351 1352 1353 1354

  const vector<int> &Axis() const { return axis_; }

 private:
1355 1356
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1357 1358
  vector<int> axis_;
};
L
liuruilong 已提交
1359
#endif
E
eclipsess 已提交
1360

L
lijiancheng0614 已提交
1361 1362 1363 1364 1365 1366 1367 1368
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1369 1370 1371 1372 1373
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1374 1375 1376
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1377
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1378

1379
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1380

1381
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1382 1383 1384 1385

  const vector<int> &Axis() const { return axis_; }

 private:
1386 1387 1388
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1389 1390 1391 1392
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1393 1394 1395 1396 1397 1398 1399 1400
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1401 1402 1403 1404 1405
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1432 1433
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1434
    // todo crf params
1435 1436 1437 1438
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1439 1440 1441 1442 1443 1444
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1445 1446
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1447 1448 1449 1450 1451 1452 1453 1454
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1455 1456
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1457 1458 1459 1460
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1461
#ifdef RESHAPE_OP
N
nhzlx 已提交
1462
template <typename Dtype>
E
eclipsess 已提交
1463
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1464 1465 1466
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1467 1468
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1469 1470 1471 1472 1473
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1474
    shape_ = GetAttr<vector<int>>("shape", attrs);
1475 1476 1477 1478 1479 1480 1481

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1482 1483
  }

1484
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1485

1486
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1487

1488
  GType *Out() const { return out_; }
E
eclipsess 已提交
1489 1490 1491 1492 1493 1494

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1495 1496 1497
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1498 1499 1500
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1501
#endif
E
eclipsess 已提交
1502

L
lijiancheng0614 已提交
1503 1504 1505 1506 1507 1508 1509 1510
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1511 1512 1513 1514 1515 1516
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1517 1518 1519 1520 1521 1522 1523 1524
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

1525
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1526

E
eclipsess 已提交
1527
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1528

E
eclipsess 已提交
1529
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1530

E
eclipsess 已提交
1531
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1532 1533 1534 1535 1536 1537

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1538 1539 1540 1541
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1542 1543 1544 1545 1546
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1547
#ifdef SCALE_OP
N
nhzlx 已提交
1548
template <typename Dtype>
I
itminner 已提交
1549
class ScaleParam : public OpParam {
N
nhzlx 已提交
1550 1551 1552
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1553 1554
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1555 1556 1557 1558
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1559 1560
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1561 1562
  }

1563
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1564

1565
  GType *Out() const { return out_; }
I
itminner 已提交
1566

1567
  const float Scale() const { return scale_; }
I
itminner 已提交
1568

1569
  const float Bias() const { return bias_; }
I
itminner 已提交
1570 1571

 private:
1572 1573
  GType *input_x_;
  GType *out_;
1574 1575
  float scale_;
  float bias_;
I
itminner 已提交
1576
};
T
Tian 已提交
1577 1578 1579
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1580
template <typename Dtype>
I
itminner 已提交
1581
class SliceParam : public OpParam {
N
nhzlx 已提交
1582 1583 1584
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1585 1586
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1587 1588 1589 1590
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1591

1592 1593 1594
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
1595 1596

    original_output_dims_size_ = output_->dims().size();
1597
  }
I
itminner 已提交
1598

1599 1600 1601 1602 1603 1604
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
1605
  int original_output_dims_size_;
I
itminner 已提交
1606
};
T
Tian 已提交
1607 1608 1609
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1610
template <typename Dtype>
T
Tian 已提交
1611
class ResizeParam : public OpParam {
N
nhzlx 已提交
1612 1613 1614
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1615 1616
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1617 1618 1619 1620 1621
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1622 1623 1624 1625 1626 1627
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1628

1629
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1630

1631
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1632

1633
  GType *Out() const { return out_; }
T
Tian 已提交
1634

I
itminner 已提交
1635
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1636

I
itminner 已提交
1637
  const int &Height() const { return height_; }
T
Tian 已提交
1638

I
itminner 已提交
1639
  const int &Width() const { return width_; }
T
Tian 已提交
1640

I
itminner 已提交
1641
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1642

I
itminner 已提交
1643
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1644

I
itminner 已提交
1645
 private:
1646 1647 1648
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1649 1650 1651 1652 1653
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1654 1655 1656
};
#endif

L
liuruilong 已提交
1657
#ifdef RELU_OP
L
liuruilong 已提交
1658 1659 1660
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1661
template <typename Dtype>
D
relu  
dolphin8 已提交
1662
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1663 1664 1665
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1666
 public:
D
relu  
dolphin8 已提交
1667
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1668 1669 1670 1671
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1672 1673
  }

1674
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1675

1676
  GType *Out() const { return out_; }
E
eclipsess 已提交
1677 1678

 private:
1679 1680
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1681
};
D
relu  
dolphin8 已提交
1682 1683 1684

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1685
 public:
D
relu  
dolphin8 已提交
1686 1687 1688
  using ReluParamBase<Dtype>::ReluParamBase;
};

Z
zp7 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
template <typename Dtype>
class Relu6Param : public ReluParamBase<Dtype> {
 public:
  Relu6Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, Scope *scope)
      : ReluParamBase<Dtype>(inputs, outputs, attrs, scope) {
    threshold = OpParam::GetAttr<float>("threshold", attrs);
  }
  float getThreshold() const { return threshold; }

 private:
  float threshold;
};

Y
yangfei 已提交
1703
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1704 1705
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1706
 public:
D
relu  
dolphin8 已提交
1707
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1708 1709 1710
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1711 1712
  framework::CLImage midImage;
};
Y
yangfei 已提交
1713
#endif
D
relu  
dolphin8 已提交
1714

L
liuruilong 已提交
1715
#endif
E
eclipsess 已提交
1716

Z
zhangyang 已提交
1717 1718 1719 1720 1721 1722 1723 1724
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1725 1726 1727 1728
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1729
  }
1730 1731
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1732 1733

 private:
1734 1735
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1736 1737 1738
#ifdef PADDLE_MOBILE_FPGA

 private:
1739
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1740 1741 1742
  fpga::BypassArgs fpga_bypass_args;

 public:
1743
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1744 1745
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1746
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1747 1748 1749
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1750
};
L
liuruilong 已提交
1751
#endif
E
eclipsess 已提交
1752

T
Tian 已提交
1753
#ifdef PRELU_OP
N
nhzlx 已提交
1754
template <typename Dtype>
T
Tian 已提交
1755
class PReluParam : public OpParam {
N
nhzlx 已提交
1756 1757 1758
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1759 1760
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1761 1762
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1763
    DLOG << "PReluParam inputs before";
1764 1765
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1766
    framework::DDim dims = alpha_->dims();
1767
    out_ = OutFrom<GType>(outputs, *scope);
1768
    mode_ = GetStringAttr("mode", attrs);
1769
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1770
  }
1771 1772 1773
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1774
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1775

I
itminner 已提交
1776
 private:
1777 1778 1779
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1780
  std::string mode_;
T
Tian 已提交
1781 1782 1783
};
#endif

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
#ifdef LEAKY_RELU_OP
template <typename Dtype>
class LeakyReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LeakyReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    alpha_ = GetAttr<float>("alpha", attrs);
  }
  const GType *InputX() const { return input_x_; }
  const float Alpha() const { return alpha_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
  float alpha_;
};
#endif

N
nhzlx 已提交
1809
template <typename Dtype>
L
liuruilong 已提交
1810
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1811 1812 1813
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1814
 public:
L
liuruilong 已提交
1815
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1816 1817 1818 1819 1820 1821
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1822 1823 1824 1825
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1826
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1827

1828
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1829

1830
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1831

xiebaiyuan's avatar
xiebaiyuan 已提交
1832
  GType *Out() const { return out_; }
E
eclipsess 已提交
1833 1834 1835 1836 1837 1838 1839 1840

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1841
  GType *input_x_;
1842 1843
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1844
  GType *out_;
E
eclipsess 已提交
1845 1846 1847
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1848

Z
ZhenWang 已提交
1849
#ifdef PADDLE_MOBILE_FPGA
1850
 private:  // NOLINT
Z
zhangyang 已提交
1851
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1852 1853

 public:
Z
zhangyang 已提交
1854 1855
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1856
#endif
E
eclipsess 已提交
1857
};
1858 1859

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1860 1861
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1862
#endif
E
eclipsess 已提交
1863

N
nhzlx 已提交
1864
template <typename Dtype>
1865
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1866 1867 1868
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1869
 public:
L
liuruilong 已提交
1870
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1871
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1872
                     Scope *scope)
1873
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1874
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1875
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1876
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1877
  }
1878
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1879 1880 1881

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1882
 protected:
1883
  GType *bias_;
W
wangliu 已提交
1884 1885 1886
  int axis_;
};

N
nhzlx 已提交
1887 1888
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1889

Z
zhangyang 已提交
1890
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1891 1892
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1893
 public:
L
liuruilong 已提交
1894
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1895
                         const VariableNameMap &outputs,
1896
                         const AttributeMap &attrs, Scope *scope)
1897
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1898 1899 1900
};
#endif

1901
#ifdef FUSION_CONVADDPRELU_OP
1902 1903 1904 1905
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1906 1907 1908 1909

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1910
                          const AttributeMap &attrs, Scope *scope)
1911
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1912
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1913
    mode_ = OpParam::GetStringAttr("mode", attrs);
1914
    framework::DDim dims = alpha_->dims();
1915
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1916
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1917
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1918
  }
1919
  const GType *InputAlpha() const { return alpha_; }
1920
  const std::string &Mode() const { return mode_; }
1921
  GType *Bias() const { return bias_; }
1922 1923 1924
  const int &Axis() const { return axis_; }

 protected:
1925
  GType *bias_;
1926
  int axis_;
1927
  GType *alpha_;
1928 1929 1930 1931 1932
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1933 1934 1935 1936
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1937 1938 1939 1940

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1941
                             const AttributeMap &attrs, Scope *scope)
1942
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1943 1944
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1945
    mode_ = OpParam::GetStringAttr("mode", attrs);
1946
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1947
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1948
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1949 1950 1951
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1952
    if (keyX1_ == keyOutput_) {
1953
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1954
    } else if (keyY1_ == keyOutput_) {
1955
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1956
    }
H
update  
hjchen2 已提交
1957
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1958
  }
1959
  const GType *InputAlpha() const { return alpha_; }
1960
  const std::string &Mode() const { return mode_; }
1961
  const GType *Bias1() const { return bias1_; }
1962

1963
  GType *Bias() const { return bias_; }
1964 1965 1966 1967

  const int &Axis() const { return axis_; }

 protected:
1968
  GType *bias_;
1969
  int axis_;
1970
  GType *alpha_;
1971
  std::string mode_;
1972
  GType *bias1_;
1973 1974 1975 1976 1977 1978
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1979
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1980
template <typename Dtype>
1981
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1982 1983 1984
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1985 1986 1987
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1988
                           const AttributeMap &attrs, Scope *scope)
1989
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1990
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1991
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1992 1993 1994 1995
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1996 1997
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
1998
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1999
  }
2000
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
2001 2002 2003

  const int &Axis() const { return axis_; }

2004
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2005

2006
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2007

2008
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2009

2010
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2011 2012 2013 2014 2015

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2016
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2017

2018
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2019

2020
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2021

2022
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2023 2024

 protected:
2025
  GType *bias_;
E
eclipsess 已提交
2026
  int axis_;
2027 2028 2029 2030
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2031 2032
  float epsilon_;
  float momentum_;
2033 2034
  GType *new_bias_;
  GType *new_scale_;
2035 2036 2037 2038 2039
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2040
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2041 2042 2043 2044 2045 2046
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2047
                           const AttributeMap &attrs, Scope *scope)
2048
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2049
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2050
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2051 2052 2053 2054
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2055 2056
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2057 2058 2059
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2060
    if (keyX_ == keyBNY_) {
2061
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2062
    } else if (keyY_ == keyBNY_) {
2063
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2064
    }
H
update  
hjchen2 已提交
2065
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2066
  }
2067
  GType *Bias() const { return bias_; }
2068 2069 2070

  const int &Axis() const { return axis_; }

2071
  const GType *InputBias() const { return input_bias_; }
2072

2073
  const GType *InputMean() const { return input_mean_; }
2074

2075
  const GType *InputScale() const { return input_scale_; }
2076

2077
  const GType *InputVariance() const { return input_variance_; }
2078 2079 2080 2081 2082

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2083
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2084

2085
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2086

2087
  const GType *NewScale() const { return new_scale_; }
2088

2089
  const GType *NewBias() const { return new_bias_; }
2090 2091

 protected:
2092
  GType *bias_;
2093
  int axis_;
2094 2095 2096 2097
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2098 2099
  float epsilon_;
  float momentum_;
2100 2101
  GType *new_bias_;
  GType *new_scale_;
2102 2103 2104
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2105
};
2106
#endif
E
eclipsess 已提交
2107

Z
zhangyang 已提交
2108
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2109
template <typename Dtype>
2110
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2111 2112 2113
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2114 2115 2116
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2117
                    Scope *scope)
2118
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2119 2120 2121 2122
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2123 2124
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2125
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2126 2127
  }

2128
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2129

2130
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2131

2132
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2133

2134
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2135 2136 2137 2138 2139

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2140
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2141

2142
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2143

2144
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2145

2146
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2147 2148

 protected:
2149 2150 2151 2152
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2153 2154
  float epsilon_;
  float momentum_;
2155 2156
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2157 2158 2159
};
#endif

2160
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2161
template <typename Dtype>
2162
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2163 2164 2165
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2166 2167 2168
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2169
                       const AttributeMap &attrs, Scope *scope)
2170
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2171
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2172
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2173 2174 2175 2176
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2177 2178
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2179
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2180
  }
2181
  GType *Bias() const { return bias_; }
2182 2183 2184

  const int &Axis() const { return axis_; }

2185
  const GType *InputBias() const { return input_bias_; }
2186

2187
  const GType *InputMean() const { return input_mean_; }
2188

2189
  const GType *InputScale() const { return input_scale_; }
2190

2191
  const GType *InputVariance() const { return input_variance_; }
2192 2193 2194 2195 2196

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2197
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2198

2199
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2200

2201
  const GType *NewScale() const { return new_scale_; }
2202

2203
  const GType *NewBias() const { return new_bias_; }
2204 2205

 protected:
2206
  GType *bias_;
2207
  int axis_;
2208 2209 2210 2211
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2212 2213
  float epsilon_;
  float momentum_;
2214 2215
  GType *new_bias_;
  GType *new_scale_;
2216
};
E
eclipsess 已提交
2217
#endif
Y
Yao,kun 已提交
2218

E
eclipsess 已提交
2219
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2220
template <typename Dtype>
2221
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2222 2223 2224
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2225 2226 2227
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2228
                          const AttributeMap &attrs, Scope *scope)
2229
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2230 2231 2232 2233
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2234 2235
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2236
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2237 2238
  }

2239
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2240

2241
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2242

2243
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2244

2245
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2246 2247 2248 2249 2250

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2251
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2252

2253
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2254

2255
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2256

2257
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2258 2259

 protected:
2260 2261 2262 2263
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2264 2265
  float epsilon_;
  float momentum_;
2266 2267
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2268 2269 2270 2271
};

#endif

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
#ifdef FUSION_CONVRELU_OP
template <typename Dtype>
class FusionConvReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvReluParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      Scope *scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
  }
};
#endif

2288
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2289
template <typename Dtype>
2290
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2291 2292 2293
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2294 2295 2296
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2297
                        const AttributeMap &attrs, Scope *scope)
2298
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2299 2300 2301 2302
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2303 2304
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2305
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2306 2307
  }

2308
  const GType *InputBias() const { return input_bias_; }
2309

2310
  const GType *InputMean() const { return input_mean_; }
2311

2312
  const GType *InputScale() const { return input_scale_; }
2313

2314
  const GType *InputVariance() const { return input_variance_; }
2315 2316 2317 2318 2319

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2320
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2321

2322
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2323

2324
  const GType *NewScale() const { return new_scale_; }
2325

2326
  const GType *NewBias() const { return new_bias_; }
2327 2328

 protected:
2329 2330 2331 2332
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2333 2334
  float epsilon_;
  float momentum_;
2335 2336
  GType *new_bias_;
  GType *new_scale_;
2337 2338 2339
};
#endif

Y
Yao,kun 已提交
2340
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2341
template <typename Dtype>
Y
Yao,kun 已提交
2342
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2343 2344 2345
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2346 2347 2348
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2349 2350 2351 2352
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2353 2354 2355 2356 2357
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2358
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2359

E
eclipsess 已提交
2360
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2361 2362 2363 2364 2365 2366 2367 2368

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2369 2370
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2371 2372 2373 2374
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2375
#endif
Y
Yao,kun 已提交
2376

2377
#ifdef DROPOUT_OP
N
nhzlx 已提交
2378
template <typename Dtype>
Y
Yao,kun 已提交
2379
class DropoutParam : public OpParam {
N
nhzlx 已提交
2380 2381 2382
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2383 2384
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2385 2386 2387 2388
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2389 2390

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2391 2392
  }

2393
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2394

2395
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2396

Y
yangfei 已提交
2397 2398
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2399
 private:
2400 2401
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2402
  float dropout_prob_;
Y
Yao,kun 已提交
2403
};
2404
#endif
Y
Yao,kun 已提交
2405

N
nhzlx 已提交
2406
template <typename Dtype>
L
liuruilong 已提交
2407
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2408 2409 2410
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2411 2412 2413
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2414 2415 2416 2417
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2418
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2419
    if (outputs.count("Output")) {
2420
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2421
    }
L
liuruilong 已提交
2422 2423 2424 2425 2426 2427
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2428
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2429

2430
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2431

2432
  GType *Output() const { return output_; }
L
liuruilong 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2442 2443 2444 2445 2446 2447 2448 2449 2450
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2451
 private:
2452 2453 2454
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2455 2456 2457 2458
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2459
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2460 2461 2462 2463 2464

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2465
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2466 2467 2468

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2469 2470 2471
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2472
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2473 2474 2475
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2476
#endif
L
liuruilong 已提交
2477
};
Z
zhangyang 已提交
2478

qnqinan's avatar
qnqinan 已提交
2479 2480 2481 2482 2483
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2484 2485

 public:
qnqinan's avatar
qnqinan 已提交
2486
  FusionDeconvAddParam(const VariableNameMap &inputs,
2487
                       const VariableNameMap &outputs,
2488
                       const AttributeMap &attrs, Scope *scope)
2489
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2490
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2491
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2492
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2493
  }
2494
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2495 2496 2497

  const int &Axis() const { return axis_; }

2498
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2499 2500

 protected:
2501
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2502
  int axis_;
2503
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2504 2505 2506 2507 2508 2509 2510
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2511 2512 2513 2514 2515 2516 2517 2518 2519
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2520
                         const AttributeMap &attrs, Scope *scope)
2521
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2522 2523 2524 2525 2526
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2527 2528 2529 2530 2531 2532 2533
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2577
                          const AttributeMap &attrs, Scope *scope)
2578
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2579 2580 2581 2582 2583
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2584 2585 2586 2587 2588 2589
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2633
                             const AttributeMap &attrs, Scope *scope)
2634
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2635 2636 2637 2638 2639
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2681

Z
zhangyang 已提交
2682 2683 2684 2685 2686
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2701 2702 2703 2704 2705 2706 2707 2708
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2709
    output_batch_reset_hidden_prev_ =
2710 2711 2712
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2713 2714
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2748 2749 2750 2751 2752 2753 2754
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2755 2756 2757 2758 2759 2760 2761 2762
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2763
    output_reset_hidden_prev_ =
2764 2765
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2794 2795 2796 2797 2798 2799 2800 2801
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2802 2803 2804 2805
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2806
    axis = GetAttr<int>("axis", attrs);
2807
  }
2808 2809
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2810
  const int &Axis() const { return axis; }
2811 2812

 private:
2813 2814
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2815
  int axis;
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2827 2828 2829 2830
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2831
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2832 2833 2834 2835 2836 2837
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2838
  }
2839
  GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2840 2841 2842 2843 2844
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2845 2846

 private:
2847
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2848
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2849
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2850 2851 2852
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2853 2854 2855 2856 2857 2858 2859 2860 2861
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2874 2875 2876 2877 2878
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2879 2880
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2881
  }
2882
  const GType *InputX() const { return input_x_; }
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }

 private:
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
  int out_h_;
  int out_w_;
};
#endif

#ifdef NEAREST_INTERP_OP
template <typename Dtype>
class NearestInterpolationParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NearestInterpolationParam(const VariableNameMap &inputs,
                            const VariableNameMap &outputs,
                            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
  }
  const GType *InputX() const { return input_x_; }
2915 2916
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2917 2918
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2919 2920

 private:
2921 2922 2923
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2924 2925
  int out_h_;
  int out_w_;
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2937 2938 2939 2940
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2941
  }
2942 2943
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2944 2945

 private:
2946 2947
  GType *input_;
  GType *out_;
2948 2949 2950
};
#endif

H
hjchen2 已提交
2951 2952 2953 2954 2955 2956 2957 2958
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2959 2960 2961 2962 2963
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2964 2965 2966 2967
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2968 2969 2970
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2983 2984 2985 2986
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2987 2988 2989 2990 2991
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2992 2993
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2994 2995 2996 2997 2998
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2999
#ifdef QUANT_OP
3000
template <typename Dtype>
3001 3002 3003 3004 3005
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3006
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3007 3008 3009 3010
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3011 3012
    // online
    // scale = max(abs(x))
3013
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3014
    // offline
3015
    if (inputs.count("InScale")) {
3016
      offline_ = true;
3017
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3018 3019
    }
    // x = round(scale * x)
3020 3021
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
3022
    }
3023 3024 3025 3026
  }

 public:
  // op input
3027
  GType *input_;
3028
  // op output
3029
  GType *output_;
3030
  GType *online_scale_;
3031
  // quantize offline scale
3032
  GType *offline_scale_;
3033 3034
  // if offine scale or not
  bool offline_ = false;
3035
  // round method type
3036 3037
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
3038
};
3039
#endif
3040

3041
#ifdef DEQUANT_OP
3042
template <typename Dtype>
3043 3044 3045 3046 3047
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3048
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3049 3050 3051 3052 3053
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
3054
    // dequantization is performed as x = x / static_scale / online_scale
3055 3056
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
3057
    } else {
3058
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
3059 3060 3061 3062 3063
    }
  }

 public:
  // op input
3064
  GType *input_;
3065
  // op output
3066
  GType *output_;
3067
  GType *activation_scale_;
3068 3069
  float weight_scale_;
};
3070
#endif
3071

3072 3073 3074 3075
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
3076
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
3077
template <typename Dtype>
3078
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
3079 3080 3081 3082
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3083 3084
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3085
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3086 3087
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3088 3089 3090 3091
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3092 3093 3094 3095 3096
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
3097 3098 3099 3100
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3101
  float epsilon_;
3102 3103 3104
};
#endif

3105 3106 3107 3108
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3109 3110 3111 3112 3113 3114 3115 3116
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3117
                          const AttributeMap &attrs, Scope *scope)
3118 3119 3120
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3121
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3122 3123 3124 3125 3126
  }

 public:
  // elementwise add
  int axis_;
3127
  GType *bias_;
3128 3129 3130
};
#endif

3131 3132 3133 3134 3135 3136 3137 3138 3139
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3140
                               const AttributeMap &attrs, Scope *scope)
3141 3142
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3143
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3144
    // offline
3145 3146
    if (inputs.count("InScale")) {
      offline_ = true;
3147
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3148 3149 3150 3151 3152 3153 3154 3155
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3156
  GType *online_scale_;
3157
  // quantize offline scale
3158
  GType *offline_scale_;
3159 3160
  // if offine scale or not
  bool offline_ = false;
3161 3162 3163 3164 3165 3166
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3167 3168 3169 3170 3171 3172 3173 3174 3175
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3176 3177 3178 3179 3180
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3204 3205 3206 3207
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3208 3209
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3210
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3221 3222 3223 3224 3225 3226 3227 3228
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3229 3230 3231 3232
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3233 3234
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3235
      input_y_ = InputYFrom<GType>(inputs, *scope);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3249 3250 3251 3252 3253 3254 3255 3256
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3257 3258 3259 3260 3261
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3273
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3274
template <typename Dtype>
Z
zhaojiaying01 已提交
3275
class LogicalBinaryParam : public OpParam {
3276 3277 3278 3279
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3280 3281
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3282 3283 3284 3285 3286
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3298
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3299 3300 3301

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3302
class LogicalUnaryParam : public OpParam {
3303 3304 3305 3306
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3307 3308
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3309 3310 3311 3312
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3324 3325 3326
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3327 3328 3329
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3330 3331 3332
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3333 3334
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3335 3336 3337
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3338 3339 3340
  }

 public:
H
hjchen2 已提交
3341 3342 3343
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3344 3345 3346 3347 3348 3349
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3350 3351 3352
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3353 3354 3355
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3356 3357
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3358 3359 3360
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3361 3362 3363
  }

 public:
H
hjchen2 已提交
3364 3365 3366
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3367 3368 3369
};
#endif

Z
zhaojiaying01 已提交
3370 3371 3372 3373 3374 3375 3376 3377
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3378 3379 3380 3381
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3401
                 const AttributeMap &attrs, Scope *scope)
3402
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3403 3404
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3405
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3406 3407 3408 3409
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3410
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3411 3412 3413 3414

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3415
  float step_;
Z
zhaojiaying01 已提交
3416 3417
};
#endif  // INCREMENT_OP
3418 3419 3420 3421 3422 3423 3424 3425
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3426 3427 3428 3429
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3430 3431 3432 3433 3434 3435 3436 3437 3438
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
H
Huie 已提交
3439 3440 3441 3442 3443
#ifdef EXP_OP
template <typename Dtype>
class EXPParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
Z
zhaojiaying01 已提交
3444

H
Huie 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
 public:
  EXPParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
  }
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
};
#endif
朔-望's avatar
朔-望 已提交
3460 3461
}  // namespace operators
}  // namespace paddle_mobile