bilinear_interp_compute_test.cc 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/cuda/bilinear_interp_compute.h"
#include <gtest/gtest.h>
#include <memory>
#include <utility>
L
liu zhengxi 已提交
19
#include <vector>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

using Tensor = lite::Tensor;

TEST(bilinear_interp, normal) {
  BilinearInterpCompute bilinear_interp_kernel;
  std::unique_ptr<KernelContext> ctx(new KernelContext);
  auto& context = ctx->As<CUDAContext>();

  operators::InterpolateParam param;

  Tensor x, osz, out;
  Tensor x_cpu, osz_cpu, out_cpu;
  Tensor x_ref, osz_ref, out_ref;

  int n = 1, c = 1, in_h = 3, in_w = 3;
  int out_h = 6, out_w = 6;
  float scale = 2.0;

  param.out_h = out_h;
  param.out_w = out_w;
  param.scale = scale;
  param.align_corners = false;
  param.align_mode = 0;

  x.Resize({n, c, in_h, in_w});
  osz.Resize({2});
  out.Resize({n, c, out_h, out_w});

  x_cpu.Resize({n, c, in_h, in_w});
  osz_cpu.Resize({2});
  out_cpu.Resize({n, c, out_h, out_w});

  x_ref.Resize({n, c, in_h, in_w});
  osz_ref.Resize({2});
  out_ref.Resize({n, c, out_h, out_w});

  auto* out_data = out.mutable_data<float>(TARGET(kCUDA));

  float* x_cpu_data = x_cpu.mutable_data<float>();
  float* osz_cpu_data = osz_cpu.mutable_data<float>();
  float* out_cpu_data = out_cpu.mutable_data<float>();

  float* x_ref_data = x_ref.mutable_data<float>();
  float* osz_ref_data = osz_ref.mutable_data<float>();

  for (int i = 0; i < x_cpu.numel(); ++i) {
    x_cpu_data[i] = i + 5.0;
    x_ref_data[i] = i + 5.0;
  }
  osz_cpu_data[0] = out_h;
  osz_cpu_data[1] = out_w;
  osz_ref_data[0] = out_h;
  osz_ref_data[1] = out_w;

  x.Assign<float, lite::DDim, TARGET(kCUDA)>(x_cpu_data, x_cpu.dims());
  osz.Assign<float, lite::DDim, TARGET(kCUDA)>(osz_cpu_data, osz_cpu.dims());

  param.X = &x;
  param.OutSize = &osz;
  param.Out = &out;
  bilinear_interp_kernel.SetParam(param);

  cudaStream_t stream;
  cudaStreamCreate(&stream);
  context.SetExecStream(stream);

  bilinear_interp_kernel.SetContext(std::move(ctx));
  bilinear_interp_kernel.Launch();
  cudaDeviceSynchronize();

  CopySync<TARGET(kCUDA)>(
      out_cpu_data, out_data, sizeof(float) * out.numel(), IoDirection::DtoH);
  for (int i = 0; i < out.numel(); i++) {
    LOG(INFO) << out_cpu_data[i];
  }
}

L
liu zhengxi 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
TEST(bilinear_interp, update) {
  BilinearInterpCompute bilinear_interp_kernel;
  std::unique_ptr<KernelContext> ctx(new KernelContext);
  auto& context = ctx->As<CUDAContext>();

  operators::InterpolateParam param;

  std::vector<Tensor *> size_tensor(2), size_tensor_cpu(2), size_tensor_ref(2);
  Tensor x, input_scale, osz, out;
  Tensor x_cpu, input_scale_cpu, osz_cpu, out_cpu;
  Tensor x_ref, size_tensor_ref, input_scale_ref, osz_ref, out_ref;

  int n = 1, c = 1, in_h = 3, in_w = 3;
  int out_h = 6, out_w = 6;
  float scale = 2.0;

  param.out_h = out_h;
  param.out_w = out_w;
  param.scale = scale;
  param.align_corners = false;
  param.align_mode = 0;

  x.Resize({n, c, in_h, in_w});
  size_tensor[0]->Resize({1});
  size_tensor[1]->Resize({1});
  input_scale.Resize({1});
  osz.Resize({2});
  out.Resize({n, c, out_h, out_w});

  x_cpu.Resize({n, c, in_h, in_w});
  size_tensor_cpu[0]->Resize({1});
  size_tensor_cpu[1]->Resize({1});
  input_scale_cpu.Resize({1});
  osz_cpu.Resize({2});
  out_cpu.Resize({n, c, out_h, out_w});

  x_ref.Resize({n, c, in_h, in_w});
  size_tensor_ref[0]->Resize({1});
  size_tensor_ref[1]->Resize({1});
  input_scale_ref.Resize({1});
  osz_ref.Resize({2});
  out_ref.Resize({n, c, out_h, out_w});

  auto* out_data = out.mutable_data<float>(TARGET(kCUDA));

  float* x_cpu_data = x_cpu.mutable_data<float>();
  float* size_tensor0_cpu_data = size_tensor_cpu[0]->mutable_data<float>();
  float* size_tensor1_cpu_data = size_tensor_cpu[1]->mutable_data<float>();
  float* input_scale_cpu_data = input_scale_cpu.mutable_data<float>();
  float* osz_cpu_data = osz_cpu.mutable_data<float>();
  float* out_cpu_data = out_cpu.mutable_data<float>();

  float* x_ref_data = x_ref.mutable_data<float>();
  float* size_tensor0_ref_data = size_tensor_ref[0]->mutable_data<float>();
  float* size_tensor1_ref_data = size_tensor_ref[1]->mutable_data<float>();
  float* input_scale_ref_data = input_scale_ref.mutable_data<float>();
  float* osz_ref_data = osz_ref.mutable_data<float>();

  for (int i = 0; i < x_cpu.numel(); ++i) {
    x_cpu_data[i] = i + 5.0;
    x_ref_data[i] = i + 5.0;
  }
  osz_cpu_data[0] = out_h;
  osz_cpu_data[1] = out_w;
  size_tensor0_cpu_data[0] = out_h;
  size_tensor1_cpu_data[0] = out_w;
  input_scale_cpu_data[0] = scale;
  osz_ref_data[0] = out_h;
  osz_ref_data[1] = out_w;
  size_tensor0_ref_data[0] = out_h;
  size_tensor1_ref_data[0] = out_w;
  input_scale_ref_data[0] = scale;

  x.Assign<float, lite::DDim, TARGET(kCUDA)>(x_cpu_data, x_cpu.dims());
  size_tensor[0]->Assign<float, lite::DDim, TARGET(kCUDA)>(
      size_tensor0_cpu_data, {1});
  size_tensor[1]->Assign<float, lite::DDim, TARGET(kCUDA)>(
      size_tensor1_cpu_data, {1});
  input_scale.Assign<float, lite::DDim, TARGET(kCUDA)>(input_scale_cpu_data,
                                                       {1});
  osz.Assign<float, lite::DDim, TARGET(kCUDA)>(osz_cpu_data, osz_cpu.dims());

  param.X = &x;
  param.SizeTensor = size_tensor;
  param.Scale = &input_scale;
  param.OutSize = &osz;
  param.Out = &out;
  bilinear_interp_kernel.SetParam(param);

  cudaStream_t stream;
  cudaStreamCreate(&stream);
  context.SetExecStream(stream);

  bilinear_interp_kernel.SetContext(std::move(ctx));
  bilinear_interp_kernel.Launch();
  cudaDeviceSynchronize();

  CopySync<TARGET(kCUDA)>(
      out_cpu_data, out_data, sizeof(float) * out.numel(), IoDirection::DtoH);
  for (int i = 0; i < out.numel(); i++) {
    LOG(INFO) << out_cpu_data[i];
  }
}

206 207 208 209
}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle