test_mul_op.cpp 3.1 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "../test_helper.h"
E
eclipsess 已提交
16
#include "../test_include.h"
E
eclipsess 已提交
17
#include "operators/mul_op.h"
E
eclipsess 已提交
18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
#define a(i, j) a[(i)*lda + (j)]
#define b(i, j) b[(i)*ldb + (j)]
#define c(i, j) c[(i)*ldc + (j)]

namespace paddle_mobile {
using framework::AttributeMap;
using framework::DDim;
using framework::Scope;
using framework::make_ddim;
template <typename I, typename O>
int TestMulOP() {
  int32_t m = 1024;
  int32_t n = 1024;
  int32_t k = 1024;
  int32_t lda = k;
  int32_t ldb = n;
  int32_t ldc = n;
  DDim inputA_shape = make_ddim({m, k});
  DDim inputB_shape = make_ddim({k, n});
  VariableNameMap inputs;
  VariableNameMap outputs;
  auto scope = std::make_shared<Scope>();
  inputs["X"] = std::vector<std::string>({"inputA"});
  inputs["Y"] = std::vector<std::string>({"inputB"});
  outputs["Out"] = std::vector<std::string>({"output"});

  auto inputA_var = scope.get()->Var("inputA");
  auto inputA = inputA_var->template GetMutable<framework::LoDTensor>();
  SetupTensor<I>(inputA, inputA_shape, -127, 127);
  auto inputB_var = scope.get()->Var("inputB");
  auto inputB = inputB_var->template GetMutable<framework::LoDTensor>();
  SetupTensor<I>(inputB, inputB_shape, -127, 127);

  auto output_var = scope.get()->Var("output");
  AttributeMap attrs;
  attrs["x_num_col_dims"].Set<int>(1);
  attrs["y_num_col_dims"].Set<int>(1);
  auto *op =
      new operators::MulOp<CPU, float>("mul", inputs, outputs, attrs, scope);
  op->InferShape();
  op->Run();
  auto output = output_var->template Get<framework::LoDTensor>();
  const O *output_data = output->data<O>();
  // compare
  O *c = static_cast<O *>(memory::Alloc(sizeof(O) * m * n));
  I *a = inputA->data<I>();
  I *b = inputB->data<I>();
  for (int32_t i = 0; i < m; ++i) {
    for (int32_t j = 0; j < n; ++j) {
      O r = 0;
      for (int32_t p = 0; p < k; p++) {
        r += static_cast<O>(a(i, p)) * static_cast<O>(b(p, j));
      }
      c(i, j) = r;
E
eclipsess 已提交
73
    }
74 75
  }

Z
Zhen Wang 已提交
76 77
  int32_t eq = 0;
  int32_t neq = 0;
78 79 80 81
  for (int32_t i = 0; i < m * n; ++i) {
    PADDLE_MOBILE_ENFORCE(
        output_data[i] == c[i], "output[%d] = %d, output_cmp[%d] = %d", i,
        static_cast<int32_t>(output_data[i]), i, static_cast<int32_t>(c[i]));
Z
Zhen Wang 已提交
82 83 84 85 86
    if (static_cast<int>(output_data[i] == c[i])) {
      ++eq;
    } else {
      ++neq;
    }
87
  }
Z
Zhen Wang 已提交
88 89
  DLOG << "mnk=" << m << " " << n << " " << k << "   eq=" << eq
       << " neq=" << neq;
90 91 92 93
  delete op;
  return 0;
}
}  // namespace paddle_mobile
E
eclipsess 已提交
94

95 96 97
int main() {
  paddle_mobile::TestMulOP<int8_t, int32_t>();
  paddle_mobile::TestMulOP<float, float>();
98
  return 0;
E
eclipsess 已提交
99
}