op_lite.h 8.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include <functional>
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26
#include <list>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "lite/core/context.h"
#include "lite/core/kernel.h"
#include "lite/core/scope.h"
27
#include "lite/model_parser/cpp_desc.h"
28
#include "lite/operators/op_params.h"
Y
Yan Chunwei 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

namespace paddle {
namespace lite {

// For registry factory.
struct Registry {
  void Touch() {}
};

namespace mir {
class Node;
class SSAGraph;
}

class OpInfo;

/**
 * The base class of an light-weight operators, currently just used in inference
 * to eliminate overhead of some operations in current framework.
 *
 * The Operator are designed as follows:
 * - it can has some members to hold the argument and some other computation
 * resources,
 * - it should act like a function call, no more logic included.
 */
class OpLite : public Registry {
 public:
  OpLite() = default;
  explicit OpLite(const std::string &type) : op_type_(type) {}
  explicit OpLite(const std::vector<Place> &valid_places)
      : valid_places_(valid_places) {}

  void SetValidPlaces(const std::vector<Place> &places) {
Z
Zhaolong Xing 已提交
62
    VLOG(5) << "valid places " << valid_places_.size();
Y
Yan Chunwei 已提交
63 64 65 66 67 68
    valid_places_ = places;
  }
  const std::vector<Place> &valid_places() const { return valid_places_; }
  // Check the shape.
  virtual bool CheckShape() const { return true; }
  // Inference the outputs' shape.
69 70
  virtual bool InferShapeImpl() const { return true; }
  virtual bool InferShape();
Y
Yan Chunwei 已提交
71 72 73 74 75
  // Run this operator.
  virtual bool Run();
  // Indicate whether the Op runs only once or not
  virtual bool run_once() const { return false; }
  std::string Type() { return op_type_; }
76 77 78
#ifdef LITE_WITH_PROFILE
  virtual void GetOpRuntimeInfo(paddle::lite::profile::OpCharacter *ch) {}
#endif
Y
Yan Chunwei 已提交
79 80 81 82

  // Link the external execution environ to internal context.
  bool Attach(const cpp::OpDesc &opdesc, lite::Scope *scope);

83 84 85 86 87
  template <typename T>
  inline void AttachParam(T *param) {
    op_param_ = static_cast<T *>(param);
  }

Y
Yan Chunwei 已提交
88 89 90 91 92 93
  const OpInfo *op_info() const { return op_info_.get(); }
  OpInfo *mutable_op_info() { return op_info_.get(); }

  // Human-readable information.
  virtual std::string DebugString() const = 0;

94 95
  virtual std::string SerializedOpInfo() const { return "N/A"; }

Y
Yan Chunwei 已提交
96 97 98 99 100 101
  const Place &kernel_place() const { return kernel_place_; }

  // Create all the kernels for the valid targets.
  std::vector<std::unique_ptr<KernelBase>> CreateKernels(
      const std::vector<Place> &places, const std::string &kernel_type = "");

102
  Scope *scope() { return scope_; }
Y
Yan Chunwei 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115

  // Assign op param to kernel.
  virtual void AttachKernel(KernelBase *kernel) = 0;
  void SetKernel(std::vector<std::unique_ptr<KernelBase>> &kernels) {  // NOLINT
    kernel_ = std::move(kernels.front());
    kernel_->SetContext(
        ContextScheduler::Global().NewContext(kernel_->target()));
  }

  KernelBase *GetKernel() {  // NOLINT
    return kernel_.get();
  }

116 117 118 119 120 121 122 123 124 125 126 127 128 129
  // Attach input variable from scope by op_desc and input name
  void AttachInput(const cpp::OpDesc &op_desc,
                   lite::Scope *scope,
                   const std::string &input_name,
                   bool is_dispensable,
                   lite::Tensor **input_var);

  // Attach output variable from scope by op_desc and output name
  void AttachOutput(const cpp::OpDesc &op_desc,
                    lite::Scope *scope,
                    const std::string &output_name,
                    bool is_dispensable,
                    lite::Tensor **output_var);

Y
Yan Chunwei 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
  virtual ~OpLite() = default;

 protected:
  // Attach it with the runtime environment.
  virtual bool AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) = 0;

  // Specify the kernel to run by default. This will specify the value of
  // `kernel_place_`.
  virtual void StaticPickKernel(const std::vector<Place> &valid_targets) {
    auto kernels = CreateKernels(valid_targets);
    kernel_ = std::move(kernels.front());
  }

  // Wait until all the inputs' events are ready.
  void SyncInputEvents() {}

  // Record the output events, and that will tell all the dependent operators
  // some inputs are ready.
  void RecordOutputEvents() {}

  const Tensor *GetTensor(lite::Scope *scope, const std::string &name) const;
  Tensor *GetMutableTensor(lite::Scope *scope, const std::string &name) const;

  friend class mir::Node;
  friend class mir::SSAGraph;

 protected:
  // some helper functions.
  template <typename T>
  const T *GetVar(Scope *scope, const std::string &name) {
    auto *var = scope->FindVar(name);
    CHECK(var) << "No var found for " << name;
    return &var->Get<T>();
  }
  template <typename T>
  T *GetMutableVar(Scope *scope, const std::string &name) {
    auto *var = scope->FindVar(name);
    CHECK(var) << "No var found for " << name;
    return var->GetMutable<T>();
  }

 protected:
172
  Scope *scope_{nullptr};
Y
Yan Chunwei 已提交
173 174 175 176 177
  std::unique_ptr<KernelBase> kernel_;
  std::string op_type_;
  std::vector<Place> valid_places_;
  Place kernel_place_{TARGET(kHost), PRECISION(kFloat)};
  std::unique_ptr<OpInfo> op_info_;
178 179 180 181 182
  // todo: it's prefered to combine last_input_shapes and
  // last_input_lods into a single hash value to decrease
  // memory usage.
  std::vector<DDimLite> last_input_shapes{};
  std::vector<std::vector<std::vector<uint64_t>>> last_input_lods{};
183 184
  std::vector<DDimLite> last_output_shapes{};
  std::vector<std::vector<std::vector<uint64_t>>> last_output_lods{};
185
  mutable operators::ParamBase *op_param_{nullptr};
186 187 188 189 190

 private:
  // Infer Shape according to memory, if current input shapes are consistent
  // with that of previous inputs, output shapes of last time will be reused.
  bool InferShapeWithCache();
Y
Yan Chunwei 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
};

/*
 * Operator Information, such as some description. It will be shared by all the
 * kernels of the same operator.
 */
class OpInfo : public cpp::OpDesc {
 public:
  OpInfo(const OpInfo &) = default;
  explicit OpInfo(const cpp::OpDesc &other) : cpp::OpDesc(other) {}

  // Collect all the input variable's name.
  std::vector<std::string> input_names() const {
    std::vector<std::string> res;
    for (auto &param : InputArgumentNames()) {
      for (auto &x : Input(param)) {
        res.push_back(x);
      }
    }
    return res;
  }

  // Collect all the output variable's name.
  std::vector<std::string> output_names() const {
    std::vector<std::string> res;
    for (auto &param : OutputArgumentNames()) {
      for (auto &x : Output(param)) {
        res.push_back(x);
      }
    }
    return res;
  }

  std::vector<std::string> input_argnames() const {
    return InputArgumentNames();
  }

  std::vector<std::string> output_argnames() const {
    return OutputArgumentNames();
  }

  void UpdateAllInputs(const std::string &from, const std::string &to) {
233
    for (auto &item : *mutable_inputs()) {
Y
Yan Chunwei 已提交
234 235 236 237 238 239 240
      for (auto &var : item.second) {
        if (var == from) var = to;
      }
    }
  }

  void UpdateAllOutputs(const std::string &from, const std::string &to) {
241
    for (auto &item : *mutable_outputs()) {
Y
Yan Chunwei 已提交
242 243 244 245 246
      for (auto &var : item.second) {
        if (var == from) var = to;
      }
    }
  }
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

  bool GetInputArgname(const std::string &value_name, std::string *out) const;
  bool GetOutputArgname(const std::string &value_name, std::string *out) const;

  bool GetInputIndex(const std::string &input_name, int *out) const;
  bool GetOutputIndex(const std::string &output_name, int *out) const;

  bool HasInputScale(const std::string &input_name) const;
  bool HasOutputScale(const std::string &output_name) const;

  void SetInputScale(const std::string &input_name,
                     const std::vector<float> &scale_value);
  void SetOutputScale(const std::string &output_name,
                      const std::vector<float> &scale_value);

  // For conv2d, depthwise_conv2d and mul, the scale of weight are a vector.
  // Otherwise, all input and output scales are scalar, but we save these
  // as vecotr.
  std::vector<float> GetInputScale(const std::string &input_name) const;
  std::vector<float> GetOutputScale(const std::string &output_name) const;
Y
Yan Chunwei 已提交
267 268 269 270
};

}  // namespace lite
}  // namespace paddle