graph.h 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <cmath>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/tensor.h"
#include "lite/kernels/mlu/bridges/tensor.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

// The Context of the converters which used for converting the ops of subgraph
// to the MLU IR graph
class Graph {
 public:
  Graph() { CNML_CALL(cnmlCreateFusionOp(&fusion_op_)); }

  ~Graph() {
    CNML_CALL(cnmlDestroyFusionOp(&fusion_op_));
    for (auto op : ops_) {
      CNML_CALL(cnmlDestroyBaseOp(&op));
    }
  }

  // Data node
  std::shared_ptr<MLUTensor> AddNode(
      const std::string& name,
      std::vector<int64_t> shape,
      cnmlTensorType_t tensor_type = CNML_TENSOR,
      cnmlDataOrder_t data_order = CNML_NCHW,
      cnmlDataType_t mlu_dtype = CNML_DATA_FLOAT32,
      void* raw_ptr = nullptr);

  std::shared_ptr<MLUTensor> GetNode(const std::string& name) {
    CHECK(HasNode(name)) << "[MLU] Node " << name << " not found.";
    return nodes_.at(name);
  }

  bool HasNode(const std::string& name) {
    return nodes_.find(name) != nodes_.end();
  }

  void AddInput(std::shared_ptr<MLUTensor> tensor) {
    inputs_.push_back(tensor->mlu_tensor());
    input_tensors_.push_back(tensor);
  }

  void AddOutput(std::shared_ptr<MLUTensor> tensor) {
    outputs_.push_back(tensor->mlu_tensor());
    output_tensors_.push_back(tensor);
  }

  void FuseOp(cnmlBaseOp_t op) { CNML_CALL(cnmlFuseOp(op, fusion_op_)); }

  void Compile(cnmlCoreVersion_t core_version, int core_number) {
    CNML_CALL(cnmlSetFusionIO(fusion_op_,
                              inputs_.data(),
                              inputs_.size(),
                              outputs_.data(),
                              outputs_.size()));
    CNML_CALL(cnmlSetFusionOpCorenum(fusion_op_, core_number));
    CNML_CALL(cnmlSetFusionOpCoreVersion(fusion_op_, core_version));
    CNML_CALL(cnmlCompileFusionOp_V2(fusion_op_));
    for (auto in : input_tensors_) {
      input_addrs_.push_back(in->mlu_data());
    }
    for (auto out : output_tensors_) {
      output_addrs_.push_back(out->mlu_data());
    }
  }

  void Compute(cnrtInvokeFuncParam_t forward_param, cnrtQueue_t que) {
    CNML_CALL(cnmlComputeFusionOpForward_V3(fusion_op_,
                                            input_addrs_.data(),
                                            input_addrs_.size(),
                                            output_addrs_.data(),
                                            output_addrs_.size(),
                                            &forward_param,
                                            que));
    CNRT_CALL(cnrtSyncQueue(que));
  }

  void BindConstData(std::string tensor_name, ::paddle::lite::Tensor* tensor) {
    const float* data = tensor->data<float>();
    size_t len = tensor->data_size();
    if (fp_type_ == CNML_DATA_FLOAT32) {
      CNML_CALL(cnmlBindConstData_V2(
          nodes_[tensor_name]->mlu_tensor(),
          const_cast<void*>(static_cast<const void*>(data)),
          false));
    } else if (fp_type_ == CNML_DATA_FLOAT16) {
      auto* data_fp16 = tensor->mutable_data<::paddle::lite::fluid::float16>();
      for (size_t i = 0; i < len; ++i) {
        data_fp16[i] = static_cast<::paddle::lite::fluid::float16>(data[i]);
      }
      CNML_CALL(cnmlBindConstData_V2(nodes_[tensor_name]->mlu_tensor(),
                                     static_cast<void*>(data_fp16),
                                     false));
    } else {
      CHECK(0);
    }
  }

  void SetComputingDataType(cnmlBaseOp_t op,
                            cnmlTensor_t tensor,
                            float scale,
                            cnmlDataType_t data_type = CNML_DATA_INT8) {
    cnmlQuantizedParam_t quant_param;
    CNML_CALL(
        cnmlCreateQuantizedParam(&quant_param, scale2position(scale), 1, 0.0));
    CNML_CALL(
        cnmlSetOperationComputingDataType(op, tensor, data_type, quant_param));
    CNML_CALL(cnmlDestroyQuantizedParam(&quant_param));
  }

  void SetFPType(::paddle::lite_api::PrecisionType type) {
    switch (type) {
      case ::paddle::lite_api::PrecisionType::kFP16:
        fp_type_ = CNML_DATA_FLOAT16;
        break;
      case ::paddle::lite_api::PrecisionType::kFloat:
        fp_type_ = CNML_DATA_FLOAT32;
        break;
      default:
        CHECK(0);
    }
  }

  cnmlDataType_t FPType() { return fp_type_; }

 private:
  cnmlDataType_t fp_type_{CNML_DATA_FLOAT32};
  std::unordered_map<std::string, std::shared_ptr<MLUTensor>> nodes_;
  std::vector<cnmlTensor_t> inputs_;
  std::vector<cnmlTensor_t> outputs_;
  std::vector<void*> input_addrs_;
  std::vector<void*> output_addrs_;
  std::vector<std::shared_ptr<MLUTensor>> input_tensors_;
  std::vector<std::shared_ptr<MLUTensor>> output_tensors_;
  std::vector<cnmlBaseOp_t> ops_;
  cnmlFusionOp_t fusion_op_;
};

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle