slice_image_compute.cc 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class SliceComputeImage2D : public KernelLite<TARGET(kOpenCL),
                                              PRECISION(kFP16),
                                              DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::SliceParam;

  std::string doc() const override { return "Slice using cl::Image2D, kFP16"; }

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/slice_kernel.cl", build_options_);
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    const auto& in_dims = param.X->dims();
    auto* x_img = param.X->data<half_t, cl::Image2D>();
    auto& out_dims = param.Out->dims();

    std::vector<int> axes = param.axes;
    std::vector<int32_t> starts = param.starts;
    std::vector<int32_t> ends = param.ends;

    if (axes.size() > 1 || axes[0] != 1) {
      LOG(FATAL) << "opencl slice_image only support channel slice ";
    }

    int axis = axes[0];
    int start = starts[0];
    int end = ends[0];
    int dim_w = in_dims[axis + 2];

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* out_img = param.Out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    cl_int status;
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, start);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, end);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, dim_w);
    CL_CHECK_FATAL(status);

    const std::vector<size_t>& default_work_size =
        DefaultWorkSize(out_dims,
                        DDim(std::vector<DDim::value_type>{
                            static_cast<int64_t>(out_image_shape["width"]),
                            static_cast<int64_t>(out_image_shape["height"])}));
    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(default_work_size.data()[0]),
                    static_cast<cl::size_type>(default_work_size.data()[1]),
                    static_cast<cl::size_type>(default_work_size.data()[2])};

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
  }

 private:
  std::string kernel_func_name_{"slice"};
  std::string build_options_{"-DCL_DTYPE_half"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(slice,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     paddle::lite::kernels::opencl::SliceComputeImage2D,
                     image2d)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();