pad2d_image_compute.cc 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class Pad2dCompute : public KernelLite<TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::Pad2dParam;

  std::string doc() const override {
    return "Pad2d using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    pad2d_param_ = param_.get_mutable<param_t>();

    if (pad2d_param_->mode == "constant") {
      kernel_func_name_ = "pad2d_constant";
    } else if (pad2d_param_->mode == "reflect") {
      kernel_func_name_ = "pad2d_reflect";
    } else if (pad2d_param_->mode == "edge") {
      kernel_func_name_ = "pad2d_edge";
    } else {
      LOG(FATAL) << "Unknown mode type";
    }

    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/pad2d_kernel.cl", build_options_);
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = pad2d_param_->X;
    auto* out = pad2d_param_->Out;
    auto out_dims = out->dims();
    auto in_dims = x->dims();

    int in_h = in_dims[2];
    int in_w = in_dims[3];
    int out_h = out_dims[2];
    int out_w = out_dims[3];

74
#ifndef LITE_SHUTDOWN_LOG
75 76 77 78
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << in_dims;
    VLOG(4) << "out->dims():" << out_dims;
79
#endif
80 81 82 83 84 85 86

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();

    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);

87
#ifndef LITE_SHUTDOWN_LOG
88 89 90 91 92
    VLOG(4) << "out_image_shape[w,h]: " << out_image_shape["width"] << " "
            << out_image_shape["height"];

    VLOG(4) << "in_h: " << in_h << ", in_w: " << in_w;
    VLOG(4) << "out_h: " << out_h << ", out_w: " << out_w;
93
#endif
94 95 96 97 98 99 100 101 102 103 104

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    auto default_work_size =
        DefaultWorkSize(out_dims,
                        DDim(std::vector<DDim::value_type>{
                            static_cast<int64_t>(out_image_shape["width"]),
                            static_cast<int64_t>(out_image_shape["height"])}));
105
#ifndef LITE_SHUTDOWN_LOG
106 107
    VLOG(4) << "default_work_size: " << default_work_size[0] << ", "
            << default_work_size[1] << ", " << default_work_size[2];
108
#endif
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    int pad_h0 = pad2d_param_->paddings[0];
    int pad_h1 = pad2d_param_->paddings[1];
    int pad_w0 = pad2d_param_->paddings[2];
    int pad_w1 = pad2d_param_->paddings[3];
    float pad_value = pad2d_param_->pad_value;

    cl_int status = kernel.setArg(arg_idx++, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_h0);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_h1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_w0);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_w1);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, pad_value);
    CL_CHECK_FATAL(status);

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(default_work_size[0]),
                    static_cast<cl::size_type>(default_work_size[1]),
                    static_cast<cl::size_type>(default_work_size[2])};

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
152
#ifndef LITE_SHUTDOWN_LOG
153 154
    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
155
#endif
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  }

 protected:
  param_t* pad2d_param_{nullptr};
  std::string kernel_func_name_{};
  std::string build_options_{"-DCL_DTYPE_half"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(
    pad2d, kOpenCL, kFP16, kImageDefault, ocl::Pad2dCompute, ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();