lrn_image_compute.cc 6.0 KB
Newer Older
H
HappyAngel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class LrnImageCompute : public KernelLite<TARGET(kOpenCL),
                                          PRECISION(kFP16),
                                          DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::LrnParam;

  std::string doc() const override {
    return "Lrn using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    lrn_param_ = param_.get_mutable<param_t>();

    auto& context = ctx_->As<OpenCLContext>();
    n_ = lrn_param_->n;
    k_ = lrn_param_->k;
    alpha_ = lrn_param_->alpha;
    beta_ = lrn_param_->beta;
    norm_region_ = lrn_param_->norm_region;
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/lrn_kernel.cl", build_options_);
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = lrn_param_->X;
    auto* out = lrn_param_->Out;
    if (norm_region_ != "AcrossChannels") {
      LOG(FATAL) << "This norm_region_: " << norm_region_ << "doesn't support";
      return;
    }
    auto out_dims = out->dims();
    auto in_dims = x->dims();

68
#ifndef LITE_SHUTDOWN_LOG
H
HappyAngel 已提交
69 70 71 72 73 74 75 76 77
    VLOG(4) << "x->target(): " << TargetToStr(x->target());
    VLOG(4) << "out->target(): " << TargetToStr(out->target());
    VLOG(4) << "x->dims(): " << in_dims;
    VLOG(4) << "lrn param: ";
    VLOG(4) << "n: " << n_;
    VLOG(4) << "k: " << k_;
    VLOG(4) << "alpha: " << alpha_;
    VLOG(4) << "beta: " << beta_;
    VLOG(4) << "norm_region: " << norm_region_;
78
#endif
H
HappyAngel 已提交
79 80 81 82 83 84 85

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();
    // VLOG(4) << "x_image: " << x_img;

    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);
86 87

#ifndef LITE_SHUTDOWN_LOG
H
HappyAngel 已提交
88 89 90
    // VLOG(4) << "out_image" << out_img;
    VLOG(4) << "out_image_shape[w,h]:" << out_image_shape["width"] << " "
            << out_image_shape["height"];
91
#endif
H
HappyAngel 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    int out_channel = out_dims[1];
    int out_width = out_dims[3];
    auto default_work_size =
        DefaultWorkSize(out_dims,
                        DDim(std::vector<DDim::value_type>{
                            static_cast<int64_t>(out_image_shape["width"]),
                            static_cast<int64_t>(out_image_shape["height"])}));
105
#ifndef LITE_SHUTDOWN_LOG
H
HappyAngel 已提交
106 107
    VLOG(4) << "default_work_size: " << default_work_size[0] << ", "
            << default_work_size[1] << ", " << default_work_size[3];
108
#endif
H
HappyAngel 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    cl_int status = kernel.setArg(arg_idx++, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_channel);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_width);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, n_);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, k_);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, alpha_);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, beta_);
    CL_CHECK_FATAL(status);

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(default_work_size[0]),
                    static_cast<cl::size_type>(default_work_size[1]),
                    static_cast<cl::size_type>(default_work_size[2])};

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
140
#ifndef LITE_SHUTDOWN_LOG
H
HappyAngel 已提交
141 142
    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
143
#endif
H
HappyAngel 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
  }

 protected:
  param_t* lrn_param_{nullptr};
  int n_{5};
  float alpha_{1e-4};
  float beta_{0.75};
  float k_{1.};
  std::string norm_region_{"AcrossChannels"};
  std::string kernel_func_name_{"lrn"};
  std::string build_options_{"-DCL_DTYPE_half"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(
    lrn, kOpenCL, kFP16, kImageDefault, ocl::LrnImageCompute, ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();