op_param.h 42.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20 21 22 23 24 25 26
#include "common/type_define.h"
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
27 28
namespace operators {

W
wangliu 已提交
29 30 31 32 33 34 35
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
36

L
liuruilong 已提交
37
class OpParam {
朔-望's avatar
朔-望 已提交
38
 protected:
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
54 55 56 57 58
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
76 77 78 79
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
96

E
eclipsess 已提交
97 98 99 100 101 102 103 104 105 106
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
107 108 109 110
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
111

112
  template <typename T>
W
wangliu 已提交
113 114
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    return GetMultiVarValue<T>("X", inputs, scope);
  }

  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
133 134 135 136 137 138
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
139 140 141 142 143
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
144 145 146 147 148 149
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

150 151 152 153 154 155 156 157 158 159 160
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
161
  static const T GetAttr(const string &key, const AttributeMap &map) {
162 163 164 165
    return ((Attribute)map.at(key)).Get<T>();
  }

  template <typename T>
W
wangliu 已提交
166
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
167
                        const Scope &scope) {
W
wangliu 已提交
168 169
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
170 171 172 173 174 175
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
176
    }
177
  }
朔-望's avatar
朔-望 已提交
178

179
  template <typename T>
W
wangliu 已提交
180 181 182
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
183 184
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
185
    vector<T *> var_res;
186 187 188
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
189
    }
190 191
    return var_res;
  }
朔-望's avatar
朔-望 已提交
192 193
};

L
liuruilong 已提交
194
#ifdef CONV_OP
朔-望's avatar
朔-望 已提交
195
class ConvParam : OpParam {
朔-望's avatar
朔-望 已提交
196
 public:
197
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
198
            const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
199
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
W
wangliu 已提交
200 201
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutputFrom<LoDTensor>(outputs, scope);
W
wangliu 已提交
202 203 204
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
205 206
    groups = GetAttr<int>("groups", attrs);
  }
朔-望's avatar
朔-望 已提交
207

208
  const Tensor *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
209

E
eclipsess 已提交
210
  const Tensor *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
211

212
  Tensor *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
213

W
wangliu 已提交
214
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
215

W
wangliu 已提交
216
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
217

W
wangliu 已提交
218
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
219

220
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
221

朔-望's avatar
朔-望 已提交
222
 private:
223 224
  Tensor *input_;
  Tensor *output_;
E
eclipsess 已提交
225
  Tensor *filter_;
W
wangliu 已提交
226 227 228
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
229
  int groups;
朔-望's avatar
朔-望 已提交
230 231 232
};

Print &operator<<(Print &printer, const ConvParam &conv_param);
L
liuruilong 已提交
233
#endif
朔-望's avatar
朔-望 已提交
234 235

class ElementwiseAddParam : OpParam {
朔-望's avatar
朔-望 已提交
236
 public:
237
  ElementwiseAddParam(const VariableNameMap &inputs,
238 239 240 241 242
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_y_ = InputYFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
243 244 245 246 247 248 249 250 251 252 253
    axis_ = GetAttr<int>("axis", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  const Tensor *InputY() const { return input_y_; }

  Tensor *Out() const { return out_; }

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
254
 private:
255 256 257 258
  Tensor *input_x_;
  Tensor *input_y_;
  Tensor *out_;
  int axis_;
朔-望's avatar
朔-望 已提交
259 260
};

261 262
#ifdef FUSION_ELEMENTWISEADDRELU_OP
using ElementwiseAddReluParam = ElementwiseAddParam;
L
liuruilong 已提交
263 264 265
#endif

#ifdef MUL_OP
朔-望's avatar
朔-望 已提交
266
class MulParam : OpParam {
朔-望's avatar
朔-望 已提交
267
 public:
268
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
269 270 271 272
           const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_y_ = InputYFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
273 274 275
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
276

277
  const Tensor *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
278

279
  const Tensor *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
280

281
  Tensor *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
282

283
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
284

285
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
286

朔-望's avatar
朔-望 已提交
287
 private:
288 289 290 291 292
  Tensor *input_x_;
  Tensor *input_y_;
  Tensor *out_;
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
293
};
L
liuruilong 已提交
294
#endif
朔-望's avatar
朔-望 已提交
295

L
liuruilong 已提交
296
#ifdef CONCAT_OP
朔-望's avatar
朔-望 已提交
297
class ConcatParam : public OpParam {
朔-望's avatar
朔-望 已提交
298
 public:
299
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
300
              const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
301
    inputs_ = InputMultiFrom<LoDTensor>(inputs, scope);
302
    out_ = OutFrom<LoDTensor>(outputs, scope);
303 304
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
305

W
wangliu 已提交
306
  vector<LoDTensor *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
307

308
  Tensor *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
309

310
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
311

朔-望's avatar
朔-望 已提交
312
 private:
W
wangliu 已提交
313
  vector<LoDTensor *> inputs_;
314 315
  Tensor *out_;
  int axis_;
朔-望's avatar
朔-望 已提交
316
};
L
liuruilong 已提交
317
#endif
朔-望's avatar
朔-望 已提交
318

L
liuruilong 已提交
319
#ifdef LRN_OP
E
eclipsess 已提交
320
class LrnParam : public OpParam {
朔-望's avatar
朔-望 已提交
321
 public:
322
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
323 324 325 326
           const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
    mid_out_ = MidOutFrom<LoDTensor>(outputs, scope);
327 328 329 330
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
331
    data_format_ = GetAttr<string>("data_format", attrs);
332
  }
E
eclipsess 已提交
333

334
  const Tensor *InputX() const { return input_x_; }
E
eclipsess 已提交
335

336
  Tensor *Out() const { return out_; }
E
eclipsess 已提交
337

338
  Tensor *MidOut() const { return mid_out_; }
E
eclipsess 已提交
339

340
  const int &N() const { return n_; }
E
eclipsess 已提交
341

342
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
343

344
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
345

346
  const float &K() const { return k_; }
E
eclipsess 已提交
347

W
wangliu 已提交
348
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
349

朔-望's avatar
朔-望 已提交
350
 private:
351 352 353 354 355 356 357
  Tensor *input_x_;
  Tensor *out_;
  Tensor *mid_out_;
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
358
  string data_format_;
E
eclipsess 已提交
359
};
L
liuruilong 已提交
360 361 362
#endif

#ifdef BATCHNORM_OP
E
eclipsess 已提交
363
class BatchNormParam : OpParam {
朔-望's avatar
朔-望 已提交
364
 public:
365
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
366 367 368 369 370 371 372
                 const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    output_y_ = OutputYFrom<LoDTensor>(outputs, scope);
    input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
373 374
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
375
    //    is_test_ = GetAttr<bool>("is_test", attrs);
376
  }
E
eclipsess 已提交
377

378
  const Tensor *InputX() const { return input_x_; }
E
eclipsess 已提交
379

380
  Tensor *OutputY() const { return output_y_; }
E
eclipsess 已提交
381

382
  const Tensor *InputBias() const { return input_bias_; }
E
eclipsess 已提交
383

384
  const Tensor *InputMean() const { return input_mean_; }
E
eclipsess 已提交
385

386
  const Tensor *InputScale() const { return input_scale_; }
E
eclipsess 已提交
387

388
  const Tensor *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
389

390
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
391

392
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
393

394
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
395

W
wangliu 已提交
396
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
397

朔-望's avatar
朔-望 已提交
398
 private:
399 400 401 402 403 404 405 406 407
  Tensor *input_x_;
  Tensor *output_y_;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
408
  string data_format_;
E
eclipsess 已提交
409
};
L
liuruilong 已提交
410 411 412
#endif

#ifdef POOL_OP
413
class PoolParam : public OpParam {
朔-望's avatar
朔-望 已提交
414
 public:
415
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
416 417
            const AttributeMap &attrs, const Scope &scope) {
    input_ = InputXFrom<LoDTensor>(inputs, scope);
418

419
    output_ = OutFrom<LoDTensor>(outputs, scope);
W
wangliu 已提交
420 421 422 423
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
424
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
425
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
426
  }
427

428
  const Tensor *Input() const { return input_; }
429

430
  Tensor *Output() const { return output_; }
431

W
wangliu 已提交
432
  const string &PoolingType() const { return pooling_type_; }
433

W
wangliu 已提交
434
  const vector<int> &Ksize() const { return ksize_; }
435

W
wangliu 已提交
436
  const vector<int> &Strides() const { return strides_; }
437

W
wangliu 已提交
438
  const vector<int> &Paddings() const { return paddings_; }
439

440
  bool isCeilMode() const { return ceil_mode_; }
441

Z
zhangyang 已提交
442
  bool isGlobalPooling() const { return global_pooling_; }
443

朔-望's avatar
朔-望 已提交
444
 private:
445 446
  Tensor *input_;
  Tensor *output_;
W
wangliu 已提交
447 448 449 450
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
451
  bool ceil_mode_;
452
  bool global_pooling_ = false;
453
};
454 455 456
#endif

#ifdef FUSION_POOLBN_OP
Z
zhangyang 已提交
457
class FusionPoolBNParam : OpParam {
458
 public:
Z
zhangyang 已提交
459 460 461
  FusionPoolBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    input_ = InputXFrom<LoDTensor>(inputs, scope);
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
    output_y_ = OutputYFrom<LoDTensor>(outputs, scope);
    input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
  const Tensor *Input() const { return input_; }

  const string &PoolingType() const { return pooling_type_; }

  const vector<int> &Ksize() const { return ksize_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  bool isCeilMode() const { return ceil_mode_; }

Z
zhangyang 已提交
490
  bool isGlobalPooling() const { return global_pooling_; }
491 492 493 494 495 496

  Tensor *OutputY() const { return output_y_; }

  const Tensor *InputBias() const { return input_bias_; }

  const Tensor *InputMean() const { return input_mean_; }
497

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
  const Tensor *InputScale() const { return input_scale_; }

  const Tensor *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  const string &DataFormat() const { return data_format_; }

 private:
  Tensor *input_;
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
  bool ceil_mode_;
  bool global_pooling_ = false;
  Tensor *output_y_;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  string data_format_;
};
L
liuruilong 已提交
528 529 530
#endif

#ifdef PRIORBOX_OP
E
eclipsess 已提交
531 532 533
class PriorBoxParam : public OpParam {
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
534 535 536 537 538
                const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<LoDTensor>(inputs, scope);
    input_image_ = InputImageFrom<LoDTensor>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<LoDTensor>(outputs, scope);
    output_variances_ = OutputVariancesFrom<LoDTensor>(outputs, scope);
W
wangliu 已提交
539 540 541 542
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
E
eclipsess 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
  const Tensor *Input() const { return input_; }

  const Tensor *InputImage() const { return input_image_; }

  Tensor *OutputBoxes() const { return output_boxes_; }

  Tensor *OutputVariances() const { return output_variances_; }

W
wangliu 已提交
557
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
558

W
wangliu 已提交
559
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
560

W
wangliu 已提交
561
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
562

W
wangliu 已提交
563
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

 private:
  Tensor *input_;
  Tensor *input_image_;
  Tensor *output_boxes_;
  Tensor *output_variances_;
W
wangliu 已提交
580 581 582 583
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
584 585 586 587 588 589
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
};
L
liuruilong 已提交
590
#endif
E
eclipsess 已提交
591

L
liuruilong 已提交
592
#ifdef BOXCODER_OP
E
eclipsess 已提交
593 594 595
class BoxCoderParam : public OpParam {
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
596 597 598 599 600
                const AttributeMap &attrs, const Scope &scope) {
    input_priorbox_ = InputPriorBoxFrom<LoDTensor>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<LoDTensor>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<LoDTensor>(inputs, scope);
    output_box_ = OutputBoxFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
  const Tensor *InputPriorBox() const { return input_priorbox_; }

  const Tensor *InputPriorBoxVar() const { return input_priorboxvar_; }

  const Tensor *InputTargetBox() const { return input_targetbox_; }

  Tensor *OutputBox() const { return output_box_; }

  const std::string &CodeType() const { return code_type_; }

 private:
  Tensor *input_priorbox_;
  Tensor *input_priorboxvar_;
  Tensor *input_targetbox_;
  Tensor *output_box_;
  std::string code_type_;
};
L
liuruilong 已提交
620
#endif
W
wangliu 已提交
621

L
liuruilong 已提交
622
#ifdef SOFTMAX_OP
W
wangliu 已提交
623 624 625
class SoftmaxParam : public OpParam {
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
626 627 628
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
W
wangliu 已提交
629 630 631 632 633 634 635 636
  }
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
};
L
liuruilong 已提交
637
#endif
W
wangliu 已提交
638

L
liuruilong 已提交
639
#ifdef SIGMOID_OP
W
wangliu 已提交
640 641 642
class SigmoidParam : public OpParam {
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
643 644 645
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
W
wangliu 已提交
646 647 648 649 650 651 652 653
  }
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
};
L
liuruilong 已提交
654 655 656
#endif

#ifdef MULTICLASSNMS_OP
E
eclipsess 已提交
657 658 659 660 661
class MultiClassNMSParam : public OpParam {
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
W
wangliu 已提交
662 663 664
    input_bboxes_ = InputBBoxesFrom<LoDTensor>(inputs, scope);
    input_scores_ = InputScoresFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

  const Tensor *InputBBoxes() const { return input_bboxes_; }

  const Tensor *InputScores() const { return input_scores_; }

  Tensor *Out() const { return out_; }

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
  Tensor *input_bboxes_;
  Tensor *input_scores_;
  Tensor *out_;
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
702
#endif
W
wangliu 已提交
703

L
liuruilong 已提交
704 705 706
class FeedParam : public OpParam {
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
707
            const AttributeMap &attrs, Scope &scope) {
708 709
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
W
wangliu 已提交
710 711
    auto var = scope.Var("batch_size");
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
712 713 714
  }
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }
W
wangliu 已提交
715
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
716

L
liuruilong 已提交
717 718 719
 private:
  Tensor *input_x_;
  Tensor *out_;
W
wangliu 已提交
720
  int batch_size;
L
liuruilong 已提交
721 722 723 724 725
};

class FetchParam : public OpParam {
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
726 727 728
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
L
liuruilong 已提交
729 730 731
  }
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }
L
liuruilong 已提交
732

L
liuruilong 已提交
733 734 735 736 737
 private:
  Tensor *input_x_;
  Tensor *out_;
};

L
liuruilong 已提交
738
#ifdef TRANSPOSE_OP
E
eclipsess 已提交
739 740 741 742
class TransposeParam : public OpParam {
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
743 744
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  Tensor *Out() const { return out_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
  vector<int> axis_;
};
L
liuruilong 已提交
759
#endif
E
eclipsess 已提交
760

L
liuruilong 已提交
761
#ifdef RESHAPE_OP
E
eclipsess 已提交
762 763 764 765
class ReshapeParam : public OpParam {
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
766 767 768
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_shape_ = InputShapeFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    shape_ = GetAttr<vector<int>>("shape", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  const Tensor *InputShape() const { return input_shape_; }

  Tensor *Out() const { return out_; }

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
  Tensor *input_x_;
  Tensor *input_shape_;
  Tensor *out_;
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
790
#endif
E
eclipsess 已提交
791

T
Tian 已提交
792
#ifdef SCALE_OP
I
itminner 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
class ScaleParam : public OpParam {
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_bias_ = InputBiasFrom<framework::LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  const Tensor *InputBias() const { return input_bias_; }

  Tensor *Out() const { return out_; }

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
  Tensor *input_x_;
  Tensor *input_bias_;
  Tensor *out_;
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
829 830 831
#endif

#ifdef SLICE_OP
I
itminner 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
class SliceParam : public OpParam {
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_shape_ = InputShapeFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  const Tensor *InputShape() const { return input_shape_; }

  Tensor *Out() const { return out_; }

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
  Tensor *input_x_;
  Tensor *input_shape_;
  Tensor *out_;
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
864 865 866 867
#endif

#ifdef RESIZE_OP
class ResizeParam : public OpParam {
I
itminner 已提交
868 869 870 871 872 873 874 875 876 877 878 879
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_shape_ = InputShapeFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
880

I
itminner 已提交
881
  const Tensor *InputX() const { return input_x_; }
T
Tian 已提交
882

I
itminner 已提交
883
  const Tensor *InputShape() const { return input_shape_; }
T
Tian 已提交
884

I
itminner 已提交
885
  Tensor *Out() const { return out_; }
T
Tian 已提交
886

I
itminner 已提交
887
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
888

I
itminner 已提交
889
  const int &Height() const { return height_; }
T
Tian 已提交
890

I
itminner 已提交
891
  const int &Width() const { return width_; }
T
Tian 已提交
892

I
itminner 已提交
893
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
894

I
itminner 已提交
895
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
896

I
itminner 已提交
897 898 899 900 901 902 903 904 905
 private:
  Tensor *input_x_;
  Tensor *input_shape_;
  Tensor *out_;
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
906 907 908
};
#endif

L
liuruilong 已提交
909
#ifdef RELU_OP
L
liuruilong 已提交
910 911 912
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
E
eclipsess 已提交
913 914 915 916
class ReluParam : public OpParam {
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
917 918
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
919 920 921 922 923 924 925 926 927 928
  }

  const Tensor *InputX() const { return input_x_; }

  Tensor *Out() const { return out_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
};
L
liuruilong 已提交
929
#endif
E
eclipsess 已提交
930

T
Tian 已提交
931 932
#ifdef PRELU_OP
class PReluParam : public OpParam {
I
itminner 已提交
933 934 935 936 937 938 939
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
    slopes_ = GetAttr<vector<float>>("slopes", attrs);
  }
T
Tian 已提交
940

I
itminner 已提交
941 942 943
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }
  const vector<float> &Slopes() const { return slopes_; }
T
Tian 已提交
944

I
itminner 已提交
945 946 947 948
 private:
  Tensor *input_x_;
  Tensor *out_;
  vector<float> slopes_;
T
Tian 已提交
949 950 951
};
#endif

L
liuruilong 已提交
952
class FusionFcParam : public OpParam {
E
eclipsess 已提交
953
 public:
L
liuruilong 已提交
954
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
955
                const AttributeMap &attrs, const Scope &scope) {
E
eclipsess 已提交
956 957 958 959
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_y_ = InputYFrom<LoDTensor>(inputs, scope);
    input_z_ = InputZFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
  const Tensor *InputX() const { return input_x_; }

  const Tensor *InputY() const { return input_y_; }

  const Tensor *InputZ() const { return input_z_; }

  Tensor *Out() const { return out_; }

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
  Tensor *input_x_;
  Tensor *input_y_;
  Tensor *input_z_;
  Tensor *out_;
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
};
987 988 989

#ifdef FUSION_FCRELU_OP
using FusionFcReluParam = FusionFcParam;
L
liuruilong 已提交
990
#endif
E
eclipsess 已提交
991

L
liuruilong 已提交
992
class FusionConvAddParam : public OpParam {
W
wangliu 已提交
993
 public:
L
liuruilong 已提交
994
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
995 996
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
W
wangliu 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    bias_ = InputYFrom<LoDTensor>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutFrom<LoDTensor>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
  Tensor *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const Tensor *Input() const { return input_; }

  const Tensor *Filter() const { return filter_; }

  Tensor *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

L
liuruilong 已提交
1025
 protected:
W
wangliu 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
  Tensor *bias_;
  int axis_;
  Tensor *input_;
  Tensor *output_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};

L
liuruilong 已提交
1037
Print &operator<<(Print &printer, const FusionConvAddParam &conv_param);
W
wangliu 已提交
1038

Z
zhangyang 已提交
1039
#ifdef FUSION_CONVADDRELU_OP
L
liuruilong 已提交
1040
class FusionConvAddReluParam : public FusionConvAddParam {
L
liuruilong 已提交
1041
 public:
L
liuruilong 已提交
1042
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1043 1044
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
L
liuruilong 已提交
1045
      : FusionConvAddParam(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1046 1047 1048
};
#endif

E
eclipsess 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
#ifdef FUSION_CONVADDBNRELU_OP
class FusionConvAddBNReluParam : public OpParam {
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<LoDTensor>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutFrom<LoDTensor>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
1064 1065 1066 1067
    input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
E
eclipsess 已提交
1068 1069
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
1070
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
  }
  Tensor *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const Tensor *Input() const { return input_; }

  const Tensor *Filter() const { return filter_; }

  Tensor *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const Tensor *InputBias() const { return input_bias_; }

  const Tensor *InputMean() const { return input_mean_; }

  const Tensor *InputScale() const { return input_scale_; }

  const Tensor *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(Tensor *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(Tensor *new_bias) { new_bias_ = new_bias; }

  const Tensor *NewScale() const { return new_scale_; }

  const Tensor *NewBias() const { return new_bias_; }

 protected:
  Tensor *bias_;
  int axis_;
  Tensor *input_;
  Tensor *output_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  Tensor *new_bias_;
  Tensor *new_scale_;
};
1132
#endif
E
eclipsess 已提交
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
#ifdef FUSION_CONVADDBN_OP
class FusionConvAddBNParam : public OpParam {
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<LoDTensor>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_y_ = OutputYFrom<LoDTensor>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
  Tensor *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const Tensor *Input() const { return input_; }

  const Tensor *Filter() const { return filter_; }

  Tensor *OutputY() const { return output_y_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const Tensor *InputBias() const { return input_bias_; }

  const Tensor *InputMean() const { return input_mean_; }

  const Tensor *InputScale() const { return input_scale_; }

  const Tensor *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(Tensor *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(Tensor *new_bias) { new_bias_ = new_bias; }

  const Tensor *NewScale() const { return new_scale_; }

  const Tensor *NewBias() const { return new_bias_; }

 protected:
  Tensor *bias_;
  int axis_;
  Tensor *input_;
  Tensor *output_y_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  Tensor *new_bias_;
  Tensor *new_scale_;
};
E
eclipsess 已提交
1217
#endif
Y
Yao,kun 已提交
1218

E
eclipsess 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
#ifdef FUSION_DWCONVBNRELU_OP
class FusionDWConvBNReluParam : public OpParam {
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutFrom<LoDTensor>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
1238
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
  }

  const Tensor *Input() const { return input_; }

  const Tensor *Filter() const { return filter_; }

  Tensor *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const Tensor *InputBias() const { return input_bias_; }

  const Tensor *InputMean() const { return input_mean_; }

  const Tensor *InputScale() const { return input_scale_; }

  const Tensor *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(Tensor *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(Tensor *new_bias) { new_bias_ = new_bias; }

  const Tensor *NewScale() const { return new_scale_; }

  const Tensor *NewBias() const { return new_bias_; }

 protected:
  Tensor *input_;
  Tensor *output_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  Tensor *new_bias_;
  Tensor *new_scale_;
};

Print &operator<<(Print &printer, const FusionConvAddParam &conv_param);
#endif

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
#ifdef FUSION_CONVBNRELU_OP
class FusionConvBNReluParam : public OpParam {
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
                        const AttributeMap &attrs, const Scope &scope) {
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutFrom<LoDTensor>(outputs, scope);

    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

  const Tensor *Input() const { return input_; }

  const Tensor *Filter() const { return filter_; }

  Tensor *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const Tensor *InputBias() const { return input_bias_; }

  const Tensor *InputMean() const { return input_mean_; }

  const Tensor *InputScale() const { return input_scale_; }

  const Tensor *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(Tensor *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(Tensor *new_bias) { new_bias_ = new_bias; }

  const Tensor *NewScale() const { return new_scale_; }

  const Tensor *NewBias() const { return new_bias_; }

 protected:
  Tensor *input_;
  Tensor *output_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  Tensor *new_bias_;
  Tensor *new_scale_;
};
#endif

Y
Yao,kun 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
#ifdef IM2SEQUENCE_OP
class Im2SequenceParam : public OpParam {
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

  const Tensor *Input() const { return input_x_; }

  Tensor *Output() const { return out_; }

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1408
#endif
Y
Yao,kun 已提交
1409

1410
#ifdef DROPOUT_OP
Y
Yao,kun 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
class DropoutParam : public OpParam {
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
  }

  const Tensor *InputX() const { return input_x_; }

  Tensor *Out() const { return out_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
};
1427
#endif
Y
Yao,kun 已提交
1428

1429 1430 1431 1432
#ifdef REGION_OP
class RegionParam : public OpParam {};
#endif

朔-望's avatar
朔-望 已提交
1433 1434
}  // namespace operators
}  // namespace paddle_mobile