conv_winograd.cc 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/conv_winograd.h"
#include <vector>
#include "lite/backends/arm/math/conv_impl.h"
#include "lite/backends/arm/math/packed_sgemm.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

template <>
void WinogradConv<PRECISION(kFloat), PRECISION(kFloat)>::ReInitWhenNeeded() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();

  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  if (last_shape_ == x_dims) {
    return;
  }

  int ic = x_dims[1];
  int ow = o_dims[3];
  int oh = o_dims[2];
  int oc = o_dims[1];
  int tile_w = (ow + 5) / 6;
  int tile_h = (oh + 5) / 6;
  int size_tile = tile_h * tile_w;
  int size_trans_channel = 8 * 8 * size_tile;
  int max_ch = ic > oc ? ic : oc;

  const int n_wino = size_tile;
  ctx.ExtendWorkspace((size_trans_channel * max_ch * 2 + n_wino) *
                      sizeof(float));
  last_shape_ = x_dims;
}

template <>
void WinogradConv<PRECISION(kFloat), PRECISION(kFloat)>::PrepareForRun() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();

  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();
  last_shape_ = x_dims;

  int ic = x_dims[1];
  int ow = o_dims[3];
  int oh = o_dims[2];
  int oc = o_dims[1];
  int tile_w = (ow + 5) / 6;
  int tile_h = (oh + 5) / 6;
  int size_tile = tile_h * tile_w;
  int size_trans_channel = 8 * 8 * size_tile;
  int max_ch = ic > oc ? ic : oc;

  const int m_wino = oc;
  const int n_wino = size_tile;
  int hblock = lite::arm::math::get_hblock(&ctx);
  int m_round = hblock * ((m_wino + hblock - 1) / hblock);
  weights_.Resize({1, 1, 1, 8 * 8 * m_round * ic});
  ctx.ExtendWorkspace((size_trans_channel * max_ch * 2 + n_wino) *
                      sizeof(float));
  auto weights_wino =
      static_cast<float*>(malloc(sizeof(float) * 8 * 8 * oc * ic));
  void* trans_tmp_ptr = malloc(sizeof(float) * 8 * 8 * oc * ic);
  lite::arm::math::winograd_transform_weights(
      weights_wino, param.filter->data<float>(), oc, ic, trans_tmp_ptr);
  auto weights_trans = weights_.mutable_data<float>();
  for (int i = 0; i < 64; ++i) {
    float* packed_weights = weights_trans + i * m_round * ic;
    const float* weights_wino_ptr = weights_wino + i * oc * ic;
    lite::arm::math::prepackA(packed_weights,
                              weights_wino_ptr,
                              1.f,
                              ic,
                              0,
                              m_wino,
                              0,
                              ic,
                              false,
                              &ctx);
  }
  free(trans_tmp_ptr);
  free(weights_wino);
}

template <>
void WinogradConv<PRECISION(kFloat), PRECISION(kFloat)>::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<ARMContext>();
  const auto* i_data = param.x->data<float>();
  const auto* w_data = weights_.data<float>();
  const auto* b_data = param.bias ? param.bias->data<float>() : nullptr;
  auto* o_data = param.output->mutable_data<float>();

  auto x_dims = param.x->dims();
  auto w_dims = param.filter->dims();
  auto o_dims = param.output->dims();

  int iw = x_dims[3];  // nchw
  int ih = x_dims[2];
  int ic = x_dims[1];
  int bs = x_dims[0];
  int oh = o_dims[2];
  int ow = o_dims[3];
  int oc = o_dims[1];

  lite::arm::math::conv_winograd3x3(
      i_data, o_data, bs, oc, oh, ow, ic, ih, iw, w_data, b_data, param, &ctx);
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle