activation_buffer_compute.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class ReluCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override { return "Relu using cl::Buffer, kFloat"; }
  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
35 36 37 38
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "buffer/relu_kernel.cl",
                                    build_options_,
                                    time_stamp_);
39 40 41 42 43 44 45 46 47 48 49 50
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
    size_t count = x_dims.production();

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* x_buf = param.X->data<float, cl::Buffer>();
    auto* out_buf = param.Out->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
    STL::stringstream kernel_key;
51
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
52 53 54 55 56 57 58 59 60 61 62 63 64
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, (const int)count);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);

    auto global_work_size = cl::NDRange{count};
65
    event_ = std::shared_ptr<cl::Event>(new cl::Event);
66 67 68 69 70 71 72 73 74 75 76 77 78 79
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_buf, event_);
  }

 private:
  std::string kernel_func_name_{"relu"};
  std::string build_options_{"-DCL_DTYPE_float -DRELU"};
80
  std::string time_stamp_{GetTimeStamp()};
81
  std::shared_ptr<cl::Event> event_{nullptr};
82 83 84 85 86 87 88 89 90 91 92 93
};

class SigmoidCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::ActivationParam;

  std::string doc() const override {
    return "Sigmoid using cl::Buffer, kFloat";
  }
  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
94 95 96 97
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "buffer/sigmoid_kernel.cl",
                                    build_options_,
                                    time_stamp_);
98 99 100 101 102 103 104 105 106 107 108 109
  }

  void Run() override {
    auto& param = *param_.get_mutable<param_t>();
    const auto& x_dims = param.X->dims();
    size_t count = x_dims.production();

    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);
    auto* x_buf = param.X->data<float, cl::Buffer>();
    auto* out_buf = param.Out->mutable_data<float, cl::Buffer>(TARGET(kOpenCL));
    STL::stringstream kernel_key;
110
    kernel_key << kernel_func_name_ << build_options_ << time_stamp;
111 112 113 114 115 116 117 118 119 120 121 122 123
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());
    VLOG(4) << TargetToStr(param.X->target());
    VLOG(4) << TargetToStr(param.Out->target());

    int arg_idx = 0;
    cl_int status = kernel.setArg(arg_idx, *x_buf);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, (const int)count);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_buf);
    CL_CHECK_FATAL(status);

    auto global_work_size = cl::NDRange{count};
124
    event_ = std::shared_ptr<cl::Event>(new cl::Event);
125 126 127 128 129 130 131 132 133 134 135 136 137 138
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_buf, event_);
  }

 private:
  std::string kernel_func_name_{"sigmoid"};
  std::string build_options_{"-DCL_DTYPE_float -DSIGMOID"};
139
  std::string time_stamp_{GetTimeStamp()};
140
  std::shared_ptr<cl::Event> event_{nullptr};
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

// Relu
REGISTER_LITE_KERNEL(relu,
                     kOpenCL,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::opencl::ReluCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize();

// Sigmoid
REGISTER_LITE_KERNEL(sigmoid,
                     kOpenCL,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::opencl::SigmoidCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kOpenCL))})
    .Finalize()