paddle_mobile.cpp 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io/paddle_mobile.h"

namespace paddle_mobile {

19 20 21 22 23
template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::SetThreadNum(int num) {
#ifdef _OPENMP
  omp_set_num_threads(num);
#endif
24
}
25

26
template <typename Dtype, Precision P>
27
bool PaddleMobile<Dtype, P>::Load(const std::string &dirname, bool optimize,
H
hjchen2 已提交
28 29
                                  bool quantification, int batch_size,
                                  bool loddable) {
30 31 32 33 34 35 36 37
  if (loader_.get() == nullptr) {
    loader_ = std::make_shared<Loader<Dtype, P>>();
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
    executor_ = std::make_shared<Executor<Dtype, P>>(
H
hjchen2 已提交
38 39
        loader_->Load(dirname, optimize, quantification), batch_size, optimize,
        loddable);
40 41 42 43 44 45 46 47 48
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

  return true;
}

template <typename Dtype, Precision P>
bool PaddleMobile<Dtype, P>::Load(const std::string &model_path,
49
                                  const std::string &para_path, bool optimize,
H
hjchen2 已提交
50 51
                                  bool quantification, int batch_size,
                                  bool loddable) {
52 53 54 55 56 57 58 59
  if (loader_.get() == nullptr) {
    loader_ = std::make_shared<Loader<Dtype, P>>();
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
    executor_ = std::make_shared<Executor<Dtype, P>>(
W
wangliu 已提交
60
        loader_->Load(model_path, para_path, optimize, quantification),
H
hjchen2 已提交
61
        batch_size, optimize, loddable);
62 63 64 65 66 67 68
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

  return true;
}

69 70 71 72
template <typename Dtype, Precision P>
bool PaddleMobile<Dtype, P>::LoadCombinedMemory(
    size_t model_len, const uint8_t *model_buf, size_t combined_params_len,
    const uint8_t *combined_params_buf) {
H
hjchen2 已提交
73
  int batch_size = 1;
74 75 76 77 78 79 80 81 82 83 84 85 86
  bool optimise = true;
  bool quantification = false;

  if (loader_.get() == nullptr) {
    loader_ = std::make_shared<Loader<Dtype, P>>();
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
    executor_ = std::make_shared<Executor<Dtype, P>>(
        loader_->LoadCombinedMemory(model_len, model_buf, combined_params_len,
                                    combined_params_buf, optimise,
87
                                    quantification),
H
hjchen2 已提交
88
        batch_size, optimise);
89 90 91 92 93 94
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

  return true;
}
95 96 97 98 99 100
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> PaddleMobile<Dtype, P>::Predict(
    const framework::Tensor &t) {
  return executor_->Predict(t);
}

xiebaiyuan's avatar
xiebaiyuan 已提交
101 102 103 104 105 106
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> PaddleMobile<Dtype, P>::PredictLod(
    const framework::LoDTensor &t) {
  return executor_->PredictLod(t);
}

107 108 109 110 111 112 113 114 115 116 117 118 119
template <typename Dtype, Precision P>
std::vector<typename PaddleMobile<Dtype, P>::Ptype>
PaddleMobile<Dtype, P>::Predict(const std::vector<Ptype> &input,
                                const std::vector<int64_t> &dims) {
  return executor_->Predict(input, dims);
}

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::Clear() {
  executor_ = nullptr;
  loader_ = nullptr;
}

120
template <typename Dtype, Precision P>
L
liuruilong 已提交
121
PaddleMobile<Dtype, P>::~PaddleMobile() {
122 123 124 125
  executor_ = nullptr;
  loader_ = nullptr;
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
#ifdef PADDLE_MOBILE_FPGA

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::InjectVariable(const framework::Tensor &t,
                                            string var_name) {
  executor_->InjectVariable(t, var_name);
}

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::FeedData(const framework::Tensor &t) {
  executor_->FeedData(t);
}

template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> PaddleMobile<Dtype, P>::FetchResult(int id) {
  return executor_->FetchResult(id);
}

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::Predict_From_To(int start, int end) {
  executor_->Predict_From_To(start, end);
}

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::Predict_From(int start) {
  executor_->Predict_From(start);
}

template <typename Dtype, Precision P>
void PaddleMobile<Dtype, P>::Predict_To(int end) {
  executor_->Predict_To(end);
}
#endif

160 161 162 163 164
template class PaddleMobile<CPU, Precision::FP32>;
template class PaddleMobile<FPGA, Precision::FP32>;
template class PaddleMobile<GPU_MALI, Precision::FP32>;

}  // namespace paddle_mobile