conv_compute.cc 4.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/fpga/conv_compute.h"
16
#include <vector>
Y
Yan Chunwei 已提交
17 18 19
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"

20 21
#include "lite/backends/fpga/KD/debugger.hpp"

Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31
namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

void ConvCompute::PrepareForRun() {
  auto& param = this->Param<param_t>();
  param.output->mutable_data<float16>();
32 33 34 35 36 37
  int pad_h = (*param.paddings)[0];
  int pad_w = (*param.paddings)[2];
  // ====================================================
  if (param.x->ZynqTensor()->shape().channel() != 1 &&
      param.groups == param.x->ZynqTensor()->shape().channel()) {
    zynqmp::DepthwiseConvParam& conv_param = dw_conv_pe_.param();
Y
Yan Chunwei 已提交
38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    conv_param.input = param.x->ZynqTensor();
    conv_param.output = param.output->ZynqTensor();
    conv_param.filter = param.filter->ZynqTensor();
    conv_param.filter->setDataType(zynqmp::FP32);
    conv_param.groups = param.groups;
    conv_param.strides = param.strides;
    conv_param.paddings = std::vector<int>({pad_h, pad_w});
    conv_param.dilations = *param.dilations;
    fill_scale_bias_const(&conv_param);
    conv_param.bias()->copyFrom(param.bias->ZynqTensor());
    conv_param.relu.enabled = param.fuse_relu;

    dw_conv_pe_.init();
    dw_conv_pe_.apply();
  } else {
    zynqmp::ConvParam& conv_param = conv_pe_.param();
    conv_param.input = param.x->ZynqTensor();
    conv_param.output = param.output->ZynqTensor();
    conv_param.filter = param.filter->ZynqTensor();
    conv_param.filter->setDataType(zynqmp::FP32);
    conv_param.groups = param.groups;
    conv_param.strides = param.strides;
    conv_param.paddings = std::vector<int>({pad_h, pad_w});
    conv_param.dilations = *param.dilations;
    fill_scale_bias_const(&conv_param);
    if (param.bias != nullptr) {
      conv_param.bias()->copyFrom(param.bias->ZynqTensor());
    }

    conv_param.relu.enabled = param.fuse_relu;
    conv_pe_.init();
    conv_pe_.apply();
H
HappyAngel 已提交
71
  }
Y
Yan Chunwei 已提交
72 73
}

74 75
void ConvCompute::Run() {
  auto& param = this->Param<param_t>();
76 77 78
  if (param.x->ZynqTensor()->shape().channel() != 1 &&
      param.groups == param.x->ZynqTensor()->shape().channel()) {
    dw_conv_pe_.dispatch();
T
tienfeek 已提交
79 80 81 82
#ifdef FPGA_PRINT_TENSOR
    zynqmp::DepthwiseConvParam& dwconv_param = dw_conv_pe_.param();
    Debugger::get_instance().registerOutput("dwconv", dwconv_param.output);
#endif
83 84 85 86 87 88 89
  } else {
    conv_pe_.dispatch();
#ifdef FPGA_PRINT_TENSOR
    zynqmp::ConvParam& conv_param = conv_pe_.param();
    Debugger::get_instance().registerOutput("conv", conv_param.output);
#endif
  }
90
}
Y
Yan Chunwei 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    conv2d, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::ConvCompute, def)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();
T
tienfeek 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123

REGISTER_LITE_KERNEL(
    depthwise_conv2d, kFPGA, kFP16, kNHWC, paddle::lite::kernels::fpga::ConvCompute, def)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Bias", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindInput("Filter", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Output",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();