executor.cpp 14.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "io/executor.h"
W
wangliu 已提交
16
#include <operators/math/gemm.h>
D
dolphin8 已提交
17
#include <algorithm>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
29

W
wangliu 已提交
30 31

namespace paddle_mobile {
32

W
wangliu 已提交
33 34 35
using framework::Variable;

template <typename Dtype, Precision P>
36 37 38 39
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p,
                             const bool use_optimize,
			     const bool loddable)
      : program_(p), use_optimize_(use_optimize), loddable_(loddable) {
W
wangliu 已提交
40
  Variable *variable_ptr = program_.scope->Var("batch_size");
41
  variable_ptr->SetValue<int>(1);
Refine  
陈后江 已提交
42 43
  to_predict_program_ =
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
44 45
  PADDLE_MOBILE_ENFORCE(to_predict_program_ != nullptr,
                        "to_predict_program_ == NULL!");
46
  const std::vector<std::shared_ptr<framework::BlockDesc>> &blocks =
W
wangliu 已提交
47
      to_predict_program_->Blocks();
48 49

  DLOG << "executor in loaddable mode: " << loddable_;
W
wangliu 已提交
50 51 52 53 54
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
55
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
56 57 58
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
Refine  
陈后江 已提交
59 60
      // infer shape to reshape tensor before predict,
      // but for lod tensor, it will need to reshape in runtime
xiebaiyuan's avatar
xiebaiyuan 已提交
61 62 63
      if (!loddable_) {
        op_base->InferShape();
      }
W
wangliu 已提交
64 65 66
      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
W
wangliu 已提交
67
  if (program_.combined) {
L
liuruilong 已提交
68 69 70 71
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
72
  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
73
      to_predict_program_->Block(0);
L
liuruilong 已提交
74
  auto &ops = ops_of_block_[*to_predict_block.get()];
L
liuruilong 已提交
75
  for (const auto &op : ops) {
L
liuruilong 已提交
76 77
    op->Init();
  }
W
wangliu 已提交
78 79
}

80
template<typename Dtype>
Refine  
陈后江 已提交
81 82
void LoadMemInternal(void **data, framework::LoDTensor *tensor) {
  char **data_buf = reinterpret_cast<char **>(data);
83 84 85
  int64_t size = tensor->numel();
  Dtype* tensor_data = tensor->mutable_data<Dtype>();
  if (0) {
Refine  
陈后江 已提交
86
    // TODO should be moved into operator init function
87 88 89 90 91 92
    float min_value;
    float max_value;
    memcpy(&min_value, data_buf, sizeof(float));
    memcpy(&max_value, data_buf + sizeof(float), sizeof(float));
    data_buf += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
Refine  
陈后江 已提交
93
    const uint8_t *uint8_data = reinterpret_cast<uint8_t*>(data_buf);
94 95
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
96
    }
97 98
    data_buf += size * sizeof(uint8_t);
  } else {
Refine  
陈后江 已提交
99 100
    memcpy(tensor_data, *data_buf, size * sizeof(Dtype));
    *data_buf += size * sizeof(Dtype);
L
liuruilong 已提交
101
  }
102
}
W
wangliu 已提交
103

104
template <typename Dtype, Precision P>
Refine  
陈后江 已提交
105 106 107 108 109
void Executor<Dtype, P>::LoadMemory(
                          void **data,
                          const std::shared_ptr<framework::VarDesc> var_desc,
                          framework::LoDTensor *tensor) {
  char **data_buf = reinterpret_cast<char**>(data);
110
  // version
Refine  
陈后江 已提交
111 112
  uint32_t version = *(reinterpret_cast<uint32_t*>(*data_buf));
  *data_buf += sizeof(uint32_t);
113
  // lod information
Refine  
陈后江 已提交
114 115
  uint64_t lod_level = *(reinterpret_cast<uint64_t*>(*data_buf));
  *data_buf += sizeof(uint64_t);
116 117 118 119

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
Refine  
陈后江 已提交
120 121
    uint64_t size = *(reinterpret_cast<uint64_t*>(*data_buf));
    *data_buf += sizeof(uint64_t);
122
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Refine  
陈后江 已提交
123
    memcpy(tmp_dim.data(), *data_buf, size);
124
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
125
    *data_buf += size;
W
wangliu 已提交
126
  }
127
  // tensor version
Refine  
陈后江 已提交
128 129
  uint32_t tensor_version = *(reinterpret_cast<uint32_t*>(*data_buf));
  *data_buf += sizeof(uint32_t);
130
  // tensor desc size
Refine  
陈后江 已提交
131 132
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t*>(*data_buf));
  *data_buf += sizeof(int32_t);
133
  // skip tensor desc
Refine  
陈后江 已提交
134
  *data_buf += tensor_desc_size;
135

Refine  
陈后江 已提交
136
  const framework::TensorDesc &tensor_desc = var_desc->Tensor_desc();
137 138 139
  tensor->Resize(framework::make_ddim(tensor_desc.Dims()));
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
W
wangliu 已提交
140
    case framework::VARTYPE_TYPE_FP32:
Refine  
陈后江 已提交
141
      LoadMemInternal<float>((void**)data_buf, tensor);
W
wangliu 已提交
142
      break;
143
    case framework::VARTYPE_TYPE_INT8:
Refine  
陈后江 已提交
144
      LoadMemInternal<int8_t>((void**)data_buf, tensor);
W
wangliu 已提交
145 146
      break;
    case framework::VARTYPE_TYPE_INT32:
Refine  
陈后江 已提交
147
      LoadMemInternal<int>((void**)data_buf, tensor);
W
wangliu 已提交
148 149
      break;
    default:
150
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
151
  }
W
wangliu 已提交
152 153 154 155 156 157 158
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
159
      auto tensor = var->template GetMutable<framework::LoDTensor>();
W
wangliu 已提交
160 161 162 163
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
Refine  
陈后江 已提交
164 165 166 167
        char *data =
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
        LoadMemory((void**)&data, var_desc, tensor);
        delete [] data;
W
wangliu 已提交
168 169
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
170
          varInputMemory(var_desc, var, tensor);
W
wangliu 已提交
171 172 173 174 175 176
        }
      }
    }
  }
}

L
liuruilong 已提交
177
template <typename Dtype, Precision P>
L
liuruilong 已提交
178
void Executor<Dtype, P>::InitCombineMemory() {
Refine  
陈后江 已提交
179 180
  char *data = nullptr;
  bool self_alloc = false;
181
  if (program_.combined_params_buf && program_.combined_params_len) {
Refine  
陈后江 已提交
182
    data = (char *)program_.combined_params_buf;
183
  } else {
Refine  
陈后江 已提交
184 185
    self_alloc = true;
    data = ReadFileToBuff(program_.para_path);
186
  }
Refine  
陈后江 已提交
187
  PADDLE_MOBILE_ENFORCE(data != nullptr, "data == nullptr");
L
liuruilong 已提交
188 189 190
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
191
      auto tensor = var->template GetMutable<framework::LoDTensor>();
L
liuruilong 已提交
192 193 194 195
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
Refine  
陈后江 已提交
196
        LoadMemory((void**)&data, var_desc, tensor);
L
liuruilong 已提交
197 198
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
199
          varInputMemory(var_desc, var, tensor);
L
liuruilong 已提交
200 201 202 203
        }
      }
    }
  }
Refine  
陈后江 已提交
204 205 206 207
  if (self_alloc) {
    delete [] data;
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
208
}
209

xiebaiyuan's avatar
xiebaiyuan 已提交
210 211 212 213
template <typename Dtype, Precision P>
bool Executor<Dtype, P>::varInputMemory(
    const std::shared_ptr<framework::VarDesc> &var_desc, Variable *var,
    framework::LoDTensor *tensor) const {
214 215
  auto type = var_desc->Tensor_desc().DataType();
  switch (type) {
Refine  
陈后江 已提交
216
    case framework::VARTYPE_TYPE_FP32:
217
      tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
218
      break;
Refine  
陈后江 已提交
219
    case framework::VARTYPE_TYPE_INT8:
220
      tensor->mutable_data<int8_t>();
Refine  
陈后江 已提交
221 222
      break;
    case framework::VARTYPE_TYPE_INT32:
223
      tensor->mutable_data<int32_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
224
      break;
Refine  
陈后江 已提交
225
    case framework::VARTYPE_TYPE_INT64:
226
      tensor->mutable_data<int64_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
227
      break;
Refine  
陈后江 已提交
228
    default:
xiebaiyuan's avatar
xiebaiyuan 已提交
229 230
      break;
  }
Refine  
陈后江 已提交
231 232 233 234 235
  bool is_mute_match = (type == framework::VARTYPE_TYPE_FP32) ||
	               (type == framework::VARTYPE_TYPE_INT8) ||
		       (type == framework::VARTYPE_TYPE_INT32) ||
		       (type == framework::VARTYPE_TYPE_INT64);
  PADDLE_MOBILE_ENFORCE(is_mute_match, "got unhandled data type : %d", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
236 237
  return is_mute_match;
}
L
liuruilong 已提交
238

W
wangliu 已提交
239
template <typename Dtype, Precision P>
W
wangliu 已提交
240 241
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
242 243 244 245 246 247
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
248
      to_predict_program_->Block(0);
D
dolphin8 已提交
249
  auto &ops = ops_of_block_[*to_predict_block.get()];
xiebaiyuan's avatar
xiebaiyuan 已提交
250

D
dolphin8 已提交
251
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
252
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
253
#endif
D
dolphin8 已提交
254
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
255
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
256 257 258 259
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
L
liuruilong 已提交
260
    // to Run
D
dolphin8 已提交
261 262 263 264 265
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
266
  }
W
wangliu 已提交
267 268 269 270 271 272 273
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
  }
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
294 295 296
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
297 298 299
  }
  printf("====================[---------]======================\n");
#endif
L
liuruilong 已提交
300
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
301
}
xiebaiyuan's avatar
xiebaiyuan 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

template <typename Dtype, Precision P>
std::shared_ptr<framework::LoDTensor> Executor<Dtype, P>::PredictLod(
    const framework::LoDTensor &t) {
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::LoDTensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  feed_tensor->set_lod(t.lod());

  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);

  auto &ops = ops_of_block_[*to_predict_block.get()];

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = 0; i < ops.size(); i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
    if (loddable_) {
      ops[i]->InferShape();
    }
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
  auto last_op = ops.rbegin();

  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
  }
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
  printf("====================[---------]======================\n");
#endif
  return std::make_shared<framework::LoDTensor>(
      framework::LoDTensor(*output_tensor));
}

W
wangliu 已提交
374 375 376 377
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
378 379 380
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
381
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
382 383
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
384 385 386 387 388 389 390 391
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
392 393 394
}

template class Executor<CPU, Precision::FP32>;
H
hanbuhe 已提交
395
template class Executor<GPU_MALI, Precision::FP32>;
L
liuruilong 已提交
396
template class Executor<FPGA, Precision::FP32>;
397
template class Executor<X86, Precision::FP32>;
W
wangliu 已提交
398 399

}  // namespace paddle_mobile