box_coder_image_compute_test.cc 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <memory>
#include <random>
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/kernels/opencl/test_helper.h"

#define FP16_MAX_DIFF (5e-1)
namespace paddle {
namespace lite {
void box_coder_ref(float* proposals_data,
                    const float* anchors_data,
                    const float* bbox_deltas_data,
                    const float* variances_data,
                    int axis,
                    bool box_normalized,
                    std::string code_type,
                    int row,
                    int col) {
  if (code_type == "decode_center_size") {
    int anchor_len = 4;
    int out_len = 4;
    int var_len = 4;
    int delta_len = 4;
    float normalized = !box_normalized ? 1.f : 0;

    for (int64_t row_id = 0; row_id < row; ++row_id) {
      for (int64_t col_id = 0; col_id < col; ++col_id) {
        size_t delta_offset = row_id * col * delta_len + col_id * delta_len;
        size_t out_offset = row_id * col * out_len + col_id * out_len;
        int prior_box_offset =
            axis == 0 ? col_id * anchor_len : row_id * anchor_len;
        int var_offset = axis == 0 ? col_id * var_len : row_id * var_len;
        auto anchor_data_tmp = anchors_data + prior_box_offset;
        auto bbox_deltas_data_tmp = bbox_deltas_data + delta_offset;
        auto proposals_data_tmp = proposals_data + out_offset;
        auto anchor_width =
            anchor_data_tmp[2] - anchor_data_tmp[0] + normalized;
        auto anchor_height =
            anchor_data_tmp[3] - anchor_data_tmp[1] + normalized;
        auto anchor_center_x = anchor_data_tmp[0] + 0.5 * anchor_width;
        auto anchor_center_y = anchor_data_tmp[1] + 0.5 * anchor_height;
        float bbox_center_x = 0, bbox_center_y = 0;
        float bbox_width = 0, bbox_height = 0;

        auto variances_data_tmp = variances_data + var_offset;
        bbox_center_x =
            variances_data_tmp[0] * bbox_deltas_data_tmp[0] * anchor_width +
            anchor_center_x;
        bbox_center_y =
            variances_data_tmp[1] * bbox_deltas_data_tmp[1] * anchor_height +
            anchor_center_y;
        bbox_width = std::exp(variances_data_tmp[2] * bbox_deltas_data_tmp[2]) *
                     anchor_width;
        bbox_height =
            std::exp(variances_data_tmp[3] * bbox_deltas_data_tmp[3]) *
            anchor_height;
        proposals_data_tmp[0] = bbox_center_x - bbox_width / 2;
        proposals_data_tmp[1] = bbox_center_y - bbox_height / 2;
        proposals_data_tmp[2] = bbox_center_x + bbox_width / 2 - normalized;
        proposals_data_tmp[3] = bbox_center_y + bbox_height / 2 - normalized;
      }
    }
  } else if (code_type == "encode_center_size") {
    LOG(FATAL) << "not implemented type: " << code_type;
  } else {
    LOG(FATAL) << "not supported type: " << code_type;
  }
}
// #define BOXCODER_FP16_LOOP_TEST
// #define BOXCODER_FP16_PRINT_RESULT
TEST(box_coder_image2d, compute) {
#ifdef BOXCODER_FP16_LOOP_TEST
  for (auto n : {1, 2, 3, 4}) {
    for (auto m : {1, 3, 4, 8}) {
      for (auto norm : {true}) {
        for (auto code_type : {"decode_center_size"}) {
          for (auto axis : {0}) {
#else
  const int n = 1;
  const int m = 1;
  const bool norm = true;
  const std::string code_type = "decode_center_size";
  const int axis = 0;
#endif  // BOXCODER_FP16_LOOP_TEST

                  LOG(INFO) << "======== input shape[n,c,h,w]:" << n << " " << m
                            << " ========";
                  LOG(INFO) << "======== parameters: norm = " << norm
                            << ", axis = " << axis << "code_type: " << code_type;

                  auto kernels = KernelRegistry::Global().Create(
                      "box_coder",
                      TARGET(kOpenCL),
                      PRECISION(kFP16),
                      DATALAYOUT(kImageDefault));
                  ASSERT_FALSE(kernels.empty());
                  auto kernel = std::move(kernels.front());
                  LOG(INFO) << "get kernel:" << kernel->doc();

                  lite::Tensor prior_box, prior_box_var, target_box, output_box;
                  operators::BoxCoderParam param;
                  param.prior_box = &prior_box;
                  param.prior_box_var = &prior_box_var;
                  param.target_box = &target_box;
                  param.proposals = &output_box;
                  param.axis = axis;
                  param.box_normalized = norm;
                  param.code_type = code_type;

                  std::unique_ptr<KernelContext> context(new KernelContext);
                  context->As<OpenCLContext>().InitOnce();

                  kernel->SetParam(param);
                  std::unique_ptr<KernelContext> boxcoder_context(
                      new KernelContext);
                  context->As<OpenCLContext>().CopySharedTo(
                      &(boxcoder_context->As<OpenCLContext>()));
                  kernel->SetContext(std::move(boxcoder_context));

                  const DDim prior_box_dims =
                      DDim(std::vector<DDim::value_type>{1, 1, m, 4});
                  const DDim prior_box_var_dims = DDim(std::vector<DDim::value_type>{1, 1, m, 4});
                  const DDim target_box_dims = DDim(std::vector<DDim::value_type>{1, n, m, 4});
                  
                  const DDim out_dim =
                      DDim(std::vector<DDim::value_type>{1, n, m, 4});
                  prior_box.Resize(prior_box_dims);
                  prior_box_var.Resize(prior_box_var_dims);
                  target_box.Resize(target_box_dims);
                  output_box.Resize(out_dim);

                  std::vector<float> prior_box_data(prior_box_dims.production());
                  std::vector<float> prior_box_var_data(prior_box_var_dims.production());
                  std::vector<float> target_box_data(target_box_dims.production());
                  for (int i = 0; i < prior_box_dims.production(); i++) {
                    prior_box_data[i] = i * 1.1 / prior_box_dims.production();
                  }
                  for (int i = 0; i < prior_box_var_dims.production(); i++) {
                    prior_box_var_data[i] = i * 1.2 / prior_box_var_dims.production();
                  }
                  for (int i = 0; i < target_box_dims.production(); i++) {
                    target_box_data[i] = i * 1.3 / target_box_dims.production();
                  }

                  LOG(INFO) << "prepare input";
                  CLImageConverterDefault* default_converter =
                      new CLImageConverterDefault();
                  DDim prior_box_image_shape =
                      default_converter->InitImageDimInfoWith(prior_box_dims);
                  LOG(INFO) << "prior_box_image_shape = " << prior_box_image_shape[0] << " "
                            << prior_box_image_shape[1];
                  std::vector<half_t> prior_box_image_data(prior_box_image_shape.production() *
                                                   4);  // 4 : RGBA
                  default_converter->NCHWToImage(
                      prior_box_data.data(), prior_box_image_data.data(), prior_box_dims);
                  auto* prior_box_image = prior_box.mutable_data<half_t, cl::Image2D>(
                      prior_box_image_shape[0], prior_box_image_shape[1], prior_box_image_data.data());

                  DDim prior_box_var_image_shape =
                      default_converter->InitImageDimInfoWith(prior_box_var_dims);
                  LOG(INFO) << "prior_box_var_image_shape = " << prior_box_var_image_shape[0] << " "
                            << prior_box_var_image_shape[1];
                  std::vector<half_t> prior_box_var_image_data(prior_box_var_image_shape.production() *
                                                   4);  // 4 : RGBA
                  default_converter->NCHWToImage(
                      prior_box_var_data.data(), prior_box_var_image_data.data(), prior_box_var_dims);
                  auto* prior_box_var_image = prior_box_var.mutable_data<half_t, cl::Image2D>(
                      prior_box_var_image_shape[0], prior_box_var_image_shape[1], prior_box_var_image_data.data());

                  DDim target_box_image_shape =
                      default_converter->InitImageDimInfoWith(target_box_dims);
                  LOG(INFO) << "target_box_image_shape = " << target_box_image_shape[0] << " "
                            << target_box_image_shape[1];
                  std::vector<half_t> target_box_image_data(target_box_image_shape.production() *
                                                   4);  // 4 : RGBA
                  default_converter->NCHWToImage(
                      target_box_data.data(), target_box_image_data.data(), target_box_dims);
                  auto* target_box_image = target_box.mutable_data<half_t, cl::Image2D>(
                      target_box_image_shape[0], target_box_image_shape[1], target_box_image_data.data());

                  DDim out_image_shape =
                      default_converter->InitImageDimInfoWith(out_dim);
                  LOG(INFO) << "out_image_shape = " << out_image_shape[0] << " "
                            << out_image_shape[1];
                  auto* out_image = output_box.mutable_data<half_t, cl::Image2D>(
                      out_image_shape[0], out_image_shape[1]);
                  kernel->Launch();

                  auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
                  auto* out_ptr = param.proposals->data<half_t, cl::Image2D>();
                  auto it = wait_list->find(out_ptr);
                  if (it != wait_list->end()) {
                    VLOG(4) << "--- Find the sync event for the target cl "
                               "tensor. ---";
                    auto& event = *(it->second);
                    event.wait();
                  } else {
                    LOG(FATAL) << "Could not find the sync event for the "
                                  "target cl tensor.";
                  }

                  lite::Tensor out_ref_tensor;
                  out_ref_tensor.Resize(out_dim);
                  box_coder_ref(out_ref_tensor.mutable_data<float>(), prior_box_data.data(), target_box_data.data(),
                                prior_box_var_data.data(), axis, norm, code_type, target_box_dims[0], target_box_dims[1]);

                  const size_t cl_image2d_row_pitch{0};
                  const size_t cl_image2d_slice_pitch{0};
                  half_t* out_image_data =
                      new half_t[out_image_shape.production() * 4];
                  TargetWrapperCL::ImgcpySync(out_image_data,
                                              out_image,
                                              out_image_shape[0],
                                              out_image_shape[1],
                                              cl_image2d_row_pitch,
                                              cl_image2d_slice_pitch,
                                              IoDirection::DtoH);
                  float* out_data = new float[out_image_shape.production() * 4];
                  default_converter->ImageToNCHW(
                      out_image_data, out_data, out_image_shape, out_dim);
// result
#ifdef BOXCODER_FP16_PRINT_RESULT
                  LOG(INFO)
                      << "---- print kernel result (input -> output) ----";
                  for (int eidx = 0; eidx < out_dim.production(); ++eidx) {
                    std::cout << target_box_data[eidx] << " -> " << out_data[eidx]
                              << std::endl;
                  }
#endif  // BOXCODER_FP16_PRINT_RESULT
                  const float* out_ref = out_ref_tensor.data<float>();
                  for (int i = 0; i < out_dim.production(); i++) {
                    auto abs_diff = abs(out_data[i] - out_ref[i]);
                    auto relative_diff =
                        COMPUTE_RELATIVE_DIFF(out_data[i], out_ref[i]);
                    EXPECT_EQ((relative_diff <= FP16_MAX_DIFF) ||
                                  (abs_diff <= FP16_MAX_DIFF),
                              true);
                    if ((relative_diff > FP16_MAX_DIFF) &&
                        (abs_diff > FP16_MAX_DIFF)) {
                      LOG(ERROR) << "error idx:" << i << ", in_data[" << i
                                 << "]: " << target_box_data[i] << ", out_data[" << i
                                 << "]: " << out_data[i] << ", out_ref[" << i
                                 << "]: " << out_ref[i]
                                 << ", abs_diff: " << abs_diff
                                 << ", relative_diff: " << relative_diff
                                 << ", FP16_MAX_DIFF: " << FP16_MAX_DIFF;
                    }
                  }
#ifdef BOXCODER_FP16_LOOP_TEST
          }        // axis
        }          // code_type
      }            // norm
    }              // m
  }                // n
#else
// nothing to do.
#endif
}

}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(box_coder, kOpenCL, kFP16, kImageDefault, ImageDefault);