pool_op.cc 10.6 KB
Newer Older
H
hong19860320 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/pool_op.h"
#include "lite/kernels/apu/bridges/graph.h"
#include "lite/kernels/apu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace apu {

int PoolConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto model = graph->model();
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[APU] Converting [" + op_type + "] ";

  auto libHandle = graph->libHandle();
  LOAD_FUNCTIONS(libHandle, NeuronModel_addOperand, neuron_model_addOperand)
  LOAD_FUNCTIONS(
      libHandle, NeuronModel_setOperandValue, neuron_model_setOperandValue)
  LOAD_FUNCTIONS(libHandle, NeuronModel_addOperation, neuron_model_addOperation)

  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
  auto out_name = op_info->Output("Out").front();
  auto out = scope->FindMutableTensor(out_name);
  auto out_dims = out->dims();
  auto pooling_type = op_info->GetAttr<std::string>("pooling_type");
  auto global_pooling = op_info->GetAttr<bool>("global_pooling");
  auto ksize = op_info->GetAttr<std::vector<int>>("ksize");
  auto paddings = op_info->GetAttr<std::vector<int>>("paddings");

  // pool mode
  if ((pooling_type == "max") || (pooling_type == "avg")) {
  } else {
    LOG(WARNING) << "[APU] Unsupported pooling type: " << pooling_type;
    return FAILED;
  }

  // pad mode
  int pad_mode = 0;
  std::string padding_algorithm("");
  if (op_info->HasAttr("padding_algorithm")) {
    padding_algorithm = op_info->GetAttr<std::string>("padding_algorithm");
  }
  if (padding_algorithm == "SAME") {
    pad_mode = 6;
  } else if (padding_algorithm == "VALID") {
    pad_mode = 5;
  }

  // paddings and strides
  if (paddings.size() == 2L) {
    for (size_t i = 0; i < 2L; ++i) {
      int copy_pad = *(paddings.begin() + 2 * i);
      paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
    }
  }
  CHECK_EQ(paddings.size(), 4L)
      << "[APU] Paddings size should be the same or twice as the inputs size.";

  bool adaptive = false;
  if (op_info->HasAttr("adaptive")) {
    adaptive = op_info->GetAttr<bool>("adaptive");
  }
  auto strides = op_info->GetAttr<std::vector<int>>("strides");
  lite::operators::UpdatePadding(&paddings,
                                 global_pooling,
                                 adaptive,
                                 padding_algorithm,
                                 x->dims(),
                                 strides,
                                 ksize);

  // Add x tensor type
  float x_scale = 1.0f;
  float out_scale = 1.0f;
  if (op_info->HasAttr("enable_int8")) {
    if (op_info->GetAttr<bool>("enable_int8")) {
      if (op_info->HasAttr("input_scale"))
        x_scale = op_info->GetAttr<float>("input_scale");
      if (op_info->HasAttr("output_scale"))
        out_scale = op_info->GetAttr<float>("output_scale");
    } else {
      LOG(WARNING) << "Do not enable_int8";
      return FAILED;
    }
  } else {
    LOG(WARNING) << "Do not enable_int8";
    return FAILED;
  }

  NeuronOperandType xType;
  xType.type = NEURON_TENSOR_QUANT8_ASYMM;
  xType.scale = x_scale;
  xType.zeroPoint = 128;
  xType.dimensionCount = x_dims.size();
  std::vector<uint32_t> dims_x = {(uint32_t)x_dims[0],
                                  (uint32_t)x_dims[2],
                                  (uint32_t)x_dims[3],
                                  (uint32_t)x_dims[1]};
  xType.dimensions = &dims_x[0];
  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    LOG(INFO) << "Graph has " << x_name;
    // input operand already exist
    x_node = graph->Get(x_name);
  } else {
    // add input operand
    (*neuron_model_addOperand)(model, &xType);  // 0: x
    x_node = graph->Add(x_name, dims_x);
  }
  VLOG(3) << "x_scale: " << x_scale << ", xType: " << xType.dimensions[0] << ":"
          << xType.dimensions[1] << ":" << xType.dimensions[2] << ":"
          << xType.dimensions[3];

  NeuronOperandType int32Type;
  int32Type.type = NEURON_INT32;
  int32Type.dimensionCount = 0;
  std::vector<uint32_t> dims_int32 = {0};

  std::shared_ptr<Node> paddingL_node = nullptr;
  (*neuron_model_addOperand)(model, &int32Type);  // 1: padding left
  paddingL_node = graph->Add(x_name + "_padding_left", dims_int32);

  std::shared_ptr<Node> paddingR_node = nullptr;
  (*neuron_model_addOperand)(model, &int32Type);  // 2: padding right
  paddingR_node = graph->Add(x_name + "_padding_right", dims_int32);

  std::shared_ptr<Node> paddingT_node = nullptr;
  (*neuron_model_addOperand)(model, &int32Type);  // 3: padding top
  paddingT_node = graph->Add(x_name + "_padding_top", dims_int32);

  std::shared_ptr<Node> paddingB_node = nullptr;
  (*neuron_model_addOperand)(model, &int32Type);  // 4: padding bottom
  paddingB_node = graph->Add(x_name + "_padding_bottom", dims_int32);

  std::shared_ptr<Node> strideW_node = nullptr;
  (*neuron_model_addOperand)(model, &int32Type);  // 5: stride width
  strideW_node = graph->Add(x_name + "_stride_width", dims_int32);

  std::shared_ptr<Node> strideH_node = nullptr;
  (*neuron_model_addOperand)(model, &int32Type);  // 6: stride height
  strideH_node = graph->Add(x_name + "_stride_height", dims_int32);

  std::shared_ptr<Node> filterW_node = nullptr;
  (*neuron_model_addOperand)(model, &int32Type);  // 7: filter width
  filterW_node = graph->Add(x_name + "_filter_width", dims_int32);

  std::shared_ptr<Node> filterH_node = nullptr;
  (*neuron_model_addOperand)(model, &int32Type);  // 8: filter height
  filterH_node = graph->Add(x_name + "_filter_height", dims_int32);

  std::shared_ptr<Node> fuse_node = nullptr;
  (*neuron_model_addOperand)(model, &int32Type);  // 9: fuse
  fuse_node = graph->Add(x_name + "_fuse", dims_int32);

  // Add out type
  // Add output tensor type
  NeuronOperandType outType;
  outType.type = NEURON_TENSOR_QUANT8_ASYMM;
  outType.scale = out_scale;
  outType.zeroPoint = 128;
  outType.dimensionCount = out_dims.size();
  std::vector<uint32_t> dims_out = {(uint32_t)out_dims[0],
                                    (uint32_t)out_dims[2],
                                    (uint32_t)out_dims[3],
                                    (uint32_t)out_dims[1]};
  outType.dimensions = &dims_out[0];
  std::shared_ptr<Node> out_node = nullptr;
  if (graph->Has(out_name)) {
    out_node = graph->Get(out_name);
  } else {
    (*neuron_model_addOperand)(model, &outType);  // out
    out_node = graph->Add(out_name, dims_out);
  }
  VLOG(3) << "output_scale: " << x_scale
          << ", outType: " << outType.dimensions[0] << ":"
          << outType.dimensions[1] << ":" << outType.dimensions[2] << ":"
          << outType.dimensions[3];

  // Add padding value
  int32_t padding_val[1];
  padding_val[0] = paddings[2];
  (*neuron_model_setOperandValue)(
      model, paddingL_node->index(), padding_val, sizeof(int32_t) * 1);
  padding_val[0] = paddings[3];
  (*neuron_model_setOperandValue)(
      model, paddingR_node->index(), padding_val, sizeof(int32_t) * 1);
  padding_val[0] = paddings[0];
  (*neuron_model_setOperandValue)(
      model, paddingT_node->index(), padding_val, sizeof(int32_t) * 1);
  padding_val[0] = paddings[1];
  (*neuron_model_setOperandValue)(
      model, paddingB_node->index(), padding_val, sizeof(int32_t) * 1);

  // Add Stride
  int32_t stride_val[1];
  stride_val[0] = strides[1];  // width
  (*neuron_model_setOperandValue)(
      model, strideW_node->index(), stride_val, sizeof(int32_t) * 1);
  stride_val[0] = strides[0];  // height
  (*neuron_model_setOperandValue)(
      model, strideH_node->index(), stride_val, sizeof(int32_t) * 1);

  // Add filter
  int32_t filter_val[1];
  filter_val[0] = global_pooling ? x_dims[3] : ksize[1];  // width
  (*neuron_model_setOperandValue)(
      model, filterW_node->index(), filter_val, sizeof(int32_t) * 1);
  filter_val[0] = global_pooling ? x_dims[2] : ksize[0];  // height
  (*neuron_model_setOperandValue)(
      model, filterH_node->index(), filter_val, sizeof(int32_t) * 1);

  // Add fuse
  int32_t fuse_val[1] = {0};
  (*neuron_model_setOperandValue)(
      model, fuse_node->index(), fuse_val, sizeof(int32_t) * 1);

  std::vector<uint32_t> addInIndex = {x_node->index(),
                                      paddingL_node->index(),
                                      paddingR_node->index(),
                                      paddingT_node->index(),
                                      paddingB_node->index(),
                                      strideW_node->index(),
                                      strideH_node->index(),
                                      filterW_node->index(),
                                      filterH_node->index(),
                                      fuse_node->index()};
  std::vector<uint32_t> addOutIndex = {out_node->index()};

  int neuron_errCode;
  if (pooling_type == "max") {
    neuron_errCode = (*neuron_model_addOperation)(model,
                                                  NEURON_MAX_POOL_2D,
                                                  addInIndex.size(),
                                                  &addInIndex[0],
                                                  addOutIndex.size(),
                                                  &addOutIndex[0]);
  } else {
    neuron_errCode = (*neuron_model_addOperation)(model,
                                                  NEURON_AVERAGE_POOL_2D,
                                                  addInIndex.size(),
                                                  &addInIndex[0],
                                                  addOutIndex.size(),
                                                  &addOutIndex[0]);
  }

  return REBUILD_WHEN_SHAPE_CHANGED;
}

}  // namespace apu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(pool2d,
                         kAPU,
                         paddle::lite::subgraph::apu::PoolConverter);