squeeze_op.cc 4.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/squeeze_op.h"
#include "lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace operators {

static DDim GetOutputShape(const std::vector<int> &squeeze_dims,
                           const DDim &in_dims,
                           bool is_runtime) {
  size_t num_squeeze_dims = squeeze_dims.size();
  int cnt_squeezed_dims = 0;
  bool should_squeeze[9] = {false};

  // Determines number of dimensions of output tensor after squeeze.
  // Mark and count the dimensions need to be squeezed
  if (num_squeeze_dims == 0) {
    for (int idx = 0; idx < in_dims.size(); ++idx) {
      if (in_dims[idx] == 1) {
        should_squeeze[idx] = true;
        ++cnt_squeezed_dims;
      }
    }
  } else {
    for (size_t idx = 0; idx < num_squeeze_dims; ++idx) {
      int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + in_dims.size()
                                          : squeeze_dims[idx];
      // Check current index, the upper limit has been checked.
      CHECK_GE(current, 0)
          << "Invalid axis, the negative axis is out of range.";

      if (is_runtime) {
        CHECK_EQ(in_dims[current], 1) << "Invalid axis index, the axis that "
                                         "will be squeezed should be equal "
                                         "to 1.";
      }

      if (!(should_squeeze[current])) {
        ++cnt_squeezed_dims;
      }
      should_squeeze[current] = true;
    }
  }

  // Make output dimensions
  std::vector<int64_t> output_shape(in_dims.size() - cnt_squeezed_dims, 0);
  for (int in_idx = 0, out_idx = 0; in_idx < in_dims.size(); ++in_idx) {
    if (!should_squeeze[in_idx]) {
      output_shape[out_idx++] = in_dims[in_idx];
    }
  }
  return DDim(output_shape);
}

bool SqueezeOp::CheckShape() const {
  CHECK_OR_FALSE(param_.X);
  CHECK_OR_FALSE(param_.Out);
  for (int a : param_.axes) {
    CHECK_LT(a, static_cast<int>(param_.X->dims().size()))
        << "The squeeze axis should be less than input tensor's rank.";
  }
  return true;
}

bool SqueezeOp::InferShape() const {
  std::vector<int> squeeze_dims = param_.axes;
  DDim in_dims = param_.X->dims();
  DDim out_dim = GetOutputShape(squeeze_dims, in_dims, true);
  param_.Out->Resize(out_dim);
  return true;
}

bool SqueezeOp::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
  auto x_var = scope->FindVar(opdesc.Input("X").front());
  auto output_var = scope->FindVar(opdesc.Output("Out").front());
  CHECK(x_var);
  CHECK(output_var);
  param_.X = const_cast<lite::Tensor *>(&(x_var->Get<lite::Tensor>()));
  param_.Out = output_var->GetMutable<lite::Tensor>();

  if (opdesc.HasAttr("axes")) {
    param_.axes = opdesc.GetAttr<std::vector<int>>("axes");
  }
  CHECK(param_.X) << "Input(X) of SqueezeOp should not be null.";
  CHECK(param_.Out) << "Output(Out) of SqueezeOp should not be null.";
  return true;
}

bool Squeeze2Op::CheckShape() const {
  SqueezeOp::CheckShape();
  CHECK_OR_FALSE(param_.XShape);
  return true;
}

bool Squeeze2Op::InferShape() const {
  SqueezeOp::InferShape();
  auto x_dims = param_.X->dims();
  std::vector<DDim::value_type> xshape_dims(x_dims.size() + 1, 1);
  for (size_t i = 0; i < x_dims.size(); i++) {
    xshape_dims[i + 1] = x_dims[i];
  }
  param_.XShape->Resize(DDim(xshape_dims));
  return true;
}

bool Squeeze2Op::AttachImpl(const cpp::OpDesc &opdesc, lite::Scope *scope) {
  SqueezeOp::AttachImpl(opdesc, scope);
  auto xshape_var = scope->FindVar(opdesc.Output("XShape").front());
  CHECK(xshape_var);
  param_.XShape = xshape_var->GetMutable<lite::Tensor>();
  CHECK(param_.XShape) << "Output(XShape) of ReshapeOp should not be null.";
  return true;
}

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(squeeze, paddle::lite::operators::SqueezeOp);
REGISTER_LITE_OP(squeeze2, paddle::lite::operators::Squeeze2Op);